
CSC-EPL- 90/003
C-Evaluation Report No. 17091

===T ~NATIONAL COMPUTER SECURITY CENTER

AD-A247 236 ,-T-

MAR 9 19

FINAL EVALUATION REPORT

American Telephone and
Telegraph Company

System V/MLS Release 1.2.0
Running on UNIX System V

Release 3.1.1
Rating Maintenance Plan

28 September 1990 92-05765

Approved for Public Release:
Distribution Unlimited

0 (4 009

FINAL EVALUATION REPORT copy
CINSPECTED

6

AMERICAN TELEPHONE AND TELEGRAPH

SYSTEM V/MLS RELEASE 1.2.0 A*a Jrl

, I . .-~ , - -o -f [:fl'Itib

RUNNING ON UNIX SYSTEM V RELEASE 3.1.1 0

SI-j
iAvgllability Coe

Deii S,-sora

NATIONAL COMPUTER SECURITY CENTER

9800 Savage Road
Fort George G. Meade
Maryland 20755-6000

September 28, 1990

Report No. CSC-EPL-90/003
Library No. S238,116

CONTENTS

Foreword... vii

Acknowledgements... viii

Executive Summary.. x

1. Introduction... I
1.1 Evaluation Process Overview... 1
1.2 Document Organization.... 2

2. System Overview.............. 3
2.1 System V/MLS Background and History.... 3
2.2 Hardware Architecture... 4

2.2.1 Evaluated Configurations.... 4
2.2.2 Hardware Components.... 4

2.2.2.1 Central Processing Unit Subsystem...... 4
2.2.2.2 Memory Subsystem.... 8
2.2.2.3 Input/Output Subsystem... 11

2.2.3 The 630 MTG Intelligent Terminal.... 16
2.2.3.1 630 MTG Memory Layout...... 18
2.2.3.2 630 MTG Memory Management.... 20
2.2.3.3 Use in a Trusted Environment..... 22

2.2.4 Physical Security Considerations.. 22
2.2.4.1 The Firmnware, Password and The Floppy Key.. 23

2.3 Software Architecture.... 24
2.3.1 TOB Boundary..... 24
2.3.2 Kernel Architecture.... 24

2.3.2.1 Overview....... 24
2.3.2.2 Hardware Layer... 24
2.3.2.3 Kernel Layer... 24
2.3.2.4 Command Layer.... 28

2.3.3 Filesystem 28
2.3.3.1 Filesystem Overview.. 28
2.3.3.2 Internal Representation.. 29

2.3.4 System Initialization..... 29
2.4 TOB Protected Resources... 29

2.4.1 Subjects...... 30
2.4.1.1 Process Data Structures..... 30
2.4.1.2 User Area... 31
2.4.1.3 Process Region Table... 31
2.4.1.4 Process Creation and Execution... 34
2.4.1.5 Signaling.... 34
2.4.1.6 Process Termination.... 36

2.4.2 Objects.. 36
2.4.2.1 Regular Files... 37
2.4.2.2 Directories.... 37
2.4.2.3 Special Files.... 38

2.4.2.4 Named Pipes... 38
2.4.2.5 Unnamed Pipes..... 38
2.4.2.6 System V IPO Objects... 38
2.4.2.7 Processes.... 40
2.4.2.8 630 MTG Window Buffers.... 41

2.4.3 TOB Protection Mechanisms... 41
2.4.3.1 Hardware Protection Mechanisms... 41
2.4.3.2 Software Protection Mechanisms... 41
2.4.3.3 Discretionary Access Control... 42
2.4.3.4 Mandatory Access Control.... 44
2.4.3.5 Special User Authorizations on System V/MLS 51
2.4.3.6 Reclassifying Information..... 53
2.4.3.7 SECURED Directories... 55
2.4.3.8 Subject/Object Access Decision Process... 56
2.4.3.9 Auditing.... 57
2.4.3.10 Trusted Path.... 59
2.4.3.11 User Identification and Authentication 59
2.4.3.12 Object Reuse... 61
2.4.3.13 System Backup and Restore.... 63
2.4.3.14 Trusted Processes.. 63

2.4.4 The 630 MTG Terminal Implementation..... 71
2.4.4.1 Overview.... 71
2.4.4.2 Logging Into The Host... 72
2.4.4.3 Logging Into the Second Host.... 72
2.4.4.4 The 63Oinit Process... 72
2.4.4.5 Layers..... 73
2.4.4.6 wproc..... 74
2.4.4.7 Window Labels.... 74
2.4.4.8 Secure Labeling at Login/Window Creation.... 75
2.4.4.9 Secure Labeling at Newpriv/Exit.... 76
2.4.4.10 Window Creation.. 76
2.4.4.11 Local Windows.... 76
2.4.4.12 Cut and Paste.. 77
2.4.4.13 Programmable Function Keys.... 78
2.4.4.14 Downloadable Software.... 78
2.4.4.15 Additional Subjects and Objects Introduced 78
2.4.4.16 Auditing on the 630 MTG 78
2.4.4.17 Logging Out of a 630 MTG terminal.. 79

2.4.5 Configuration Management.... 80

3. Evaluation as a BI system 82
3.1 Discretionary Access Control... 82

3.1.1 Requirement.. o... 82
3.1.2 Applicable Features.... 82
3.1.3 Conclusion.. 82

3.2 Object Reuse... 82
3.2.1 Requirement... 82
3.2.2 Applicable Fcaturs.... 83

3.2.2.1 File System Objects 83
3.2.2.2 Memory-Based Objects 83
3.2.2.3 Object Reuse on the 630 MTG Terminal 83

3.2.3 Conclusion 84
3.3 Labels 84

3.3.1 Requirement 84
3.3.2 Applicable Features 84

3.3.2.1 Labeling on the 630 MTG Terminal 84
3.3.3 Conclusion 84

3.4 Label Integrity 84
3.4.1 Requirement 84
3.4.2 Applicable Features 84
3.4.3 Conclusion 85

3.5 Exportation of Labeled Information 85
3.5.1 Requirement 85
3.5.2 Applicable Features 85
3.5.3 Conclusion 85

3.6 Exportation to Multilevel Devices 85
3.6.1 Requirement 85
3.6.2 Applicable Features 85
3.6.3 Conclusion 86

3.7 Exportation to Single-Level Devices 86
3.7.1 Requirement 86
3.7.2 Applicable Features 86
3.7.3 Conclusion 87

3.8 Labeling Human-Readable Output 87
3.8.1 Requirement 87
3.8.2 Applicable Features 87
3.8.3 Conclusion 88

3.9 Subject Sensitivity Labels 88
3.9.1 Requirement 88
3.9.2 Applicable Features 88
3.9.3 Conclusion 88

3.10 Device Labels. 88
3.10.1 Requirement 88
3.10.2 Applicable Features 88
3.10.3 Conclusion 89

3.11 Mandatory Access Control 89
3.11.1 Requirement 89
3.11.2 Applicable Features 89

3.11.2.1 MAC and the 630 MTG Terminal 90
3.11.3 Conclusion 90

3.12 Identification and Authentication 90
3.12.1 Requirement 90
3.12.2 Applicable Features 91

3.12.2.1 Identification and Authentication and the 630 MTO
Terminal 91

-ui-

3.12.3 Conclusion . 91
3.13 Trusted Path 91

3.13.1 Requirement 91
3.13.2 Applicable Features 91
3.13.3 Conclusion . Gi

3.14 Audit 92
3.14.1 Requirement 92
3.14.2 Applicable Features 92

3.14.2.1 Auditing User Actions On The 630 MTG Terminal 94
3.14.3 Conclusion 95

3.15 System Architecture 95
3.15.1 Requirement 95
3.15.2 Applicable Features 95
3.15.3 Conclusion 95

3.16 System Integrity 95
3.16.1 Requirement 95
3.16.2 Applicable Features 95
3.16.3 Conclusion 96

3.17 Security Testing 96
3.17.1 Requirement 96
3.17.2 Applicable Features 96

3.17.2.1 Overview of Vendor Test Suite 96
3.17.2.2 Additional User Testing 97
3.17.2.3 Vendor Security Analyst (VSA) Testing 97
3.17.2.4 Problems Uncovered During System V/MLS Testing 98

3.17.3 Conclusion 99
3.18 Design Specification and Verification 99

3.18.1 Requirement 99
3.18.2 Applicable Features 99
3.18.3 Conclusion 99

3.19 Security Features User's Guide 99
3.19.1 Requirement 99
3.19.2 Applicable Features 99

3.19.2.1 System V/MLS User's Guide and Reference Manual 99
3.19.2.2 630 MTG User's Guide 100

3.19.3 Conclusion 100
3.20 Trusted Facility Manual 100

3.20.1 Requirement 100
3.20.2 Applicable Features 100

3.20.2.1 System V/MLS Trusted Facility Manual 100
3.20.2.2 630/MLS Trusted Facility Manual 101

3.20.3 Conclusion 101
3.21 Test Documentation 101

3.21.1 Requirement 101
3.21.2 Applicable Features 101
3.21.3 Conclusion 102

3.22 Design Documentation 102
3.22.1 Requirement 102

- iv -

. , , MEMNON

3.22.2 Applicable Features 102
3.22.3 Conclusion.. 102

3.23 RAMP... 102
3.23.1 Requirement... 102
3.23.2 Applicable Features.... 102
3.23.3 Conclusion.. 103

4. Evaluator's Comments.......................104

Appendix A: Evaluated Hardware Components... A-1

Appendix B: Evaluated Software Components.................B-I

Appendix C: Trusted Computing Base Components..- 1

Appendix D: Bibliography.......................D-I

Appendix E: Evaluated Products Listing...................Fi1

LIST OF FIGURES

Figure 1. Virtual to Physical Address Translation 10

Figure 2. The 630 MTG Memory Layout..... 19

Figure 3. 630 MTG Memory Management..................21

Figure 4. Shared Memory Scheme.....................27

Figure 5. Process Data Structures.....................33

Figure 6. Labels File Structure......................49

Figure 7. Privilege Data Structure.....................50

-vl-

Final Evaluation Report AT&T System VlMLS

Foreword

Foreword

This publication, the Final Evaluation Report Addendum of American Telephone

and Telegraph Incorporated's, System V/MLS, is being issued by the National

Computer Security Center under the authority of and in accordance with DoD

Directive 5215.1, "Computer Security Evaluation Center." The purpose of this

report is to document the current evaluation AT&T's System V/MLS operating

system and incorporate the changes that were approved at the Rating
Maintenance Technical Review Board. The requirements stated in this report

are taken from Department of Defense Trusted Computer System Evaluation
Criteria, dated December 1985.

Approved:

PATRICK R.-G)W ER, September 28, 1990

Director,

National Computer Security Center

- vii -

Final Evaluation Report AT&T System V/MI
Acknowledgements

Acknowledgements

Team Members

Team members included the following individuals, affiliated with the following organizations:

System V/MLS Test Organization

AT&T Bell Laboratories
Whippany, NJ

System V/MLS System Development Organization

AT&T Bell Laboratories
Greensboro, NC

Sharon G. Kass

The MITRE Corporation
Bedford, Massachusetts

-viii-

Final Evaluation Report AT&T System V/MLS
Acknowledgements

Acknowledgement is also given to the original evaluation team members who developed much
of this document. These members were:

Karen M. Bielat
Caralyn A. Crescenzi

Mark D. Gabriele

National Security Agency
Fort Meade, Maryland

William N. Havener

The MITRE Corporation
McLean, Virginia

Sharon G. Kass

The MITRE Corporation
Bedford, Massachusetts

Holly M. Traxler

Institute for Defense Analysis
Alexandria, Virginia

-ix-

Final Evaluation Report AT&T System V/MLS
Ey-c"%ive Summary

Executive Summary

The security protection provided by the AT&T System VIMLS (System V.WMLS) operating system,
configured as described in the Trusted Facility Manual, when running on the AT&T 3B2/500 or
3B2/600 minicomputers, has been evaluated by a National Security Agency, Trusted Product and
Network Security Evaluation Team. Tue security features of System V/MLS were examined
against the requirements specified by the DoD Trusted Computer System Evaluation Criteria (the
Criteria or TCSEC) dated 26 December 1985 in order to establish a TCSEC rating.

The National Security Agency Evaluation team has determined that the highest class at which
System VJMLS satisfies all the specified requirements of the Criteria is class B1. Therefore
System V/MLS when configured in the manner described in the Trusted Facility Manual, has been
assigned a class B1 rating.

A system that has been rated as being a B1 class system provides a Trusted Computing Base (TCB)
that preserves the integrity of sensitivity labels and uses them to enforce a set of mandatory access
control rules.

The UNIX System V operating system is a general purpose time-sharing system. System V/MLS
an enhanced version of UNIX system V, was developed to meet the BI Criteria while maintaining
compatibility with UNIX System V. System V/MLS maintains a security audit trail, provides
mandatory access control, and includes other security features such as a random password
generator, a trusted version of the Bourne shell, and a trusted administrative interface. There is
also a configuration management plan in effect for this system to allow participation in the
Ratings Maintenance Phase (RAMP).

X

Final Evaluation Report AT&T System V/MIS
Introduction

1. Introductlon

In October 1988, the National Security Agency (NSA) Trusted Product and Network Security
Evaluation Division (TPNSE) began a formal product evaluation of System V/MLS, an American
Telephone and Telegraph (AT&T) product. It is intended that this report give evidence and
analysis of the security features and assurances provided by the System V/MLS operating system.
This report documents the system's security design and appraises its functionality and assurances
against the Criteria's BI security requirements. This evaluation applies to System V/MLS Release
1.2.0 running on UNIX System V Release 3.1.1.

The System V/MLS product adds mandatory access control and auditing capabilities to UNIX
System V. It is integrated with UNIX System V at install time via an overlay procedure. Some
UNIX System V routines were rewritten for System V/MLS, and others were added. Hooks were
inserted in the underlying UNIX System V routines to call the new System V/MLS routines.

Although System V/MLS is a separate product from UNIX System V, throughout this report
System V/MLS will be referred to as the whole integrated system. Statements referencing only
those routines unique to the System V/MLS product are clarified to reflect the exact meaning.

The updates to this report were gathered by AT&T Vendor Security Analysts (VSA's), on behalf of
the Trusted Product and Network Security Evaluation Division, through documentation, interaction
with system developers, and hands on use of System V/MLS.

1.1 Evaluation Process Overview

The Department of Defense Computer Security Center was established in January 1981 to
encourage the widespread availability of trusted computer systems for use by facilities processing
classified or other sensitive information. In August 1985 the name of the organization was changed
to the National Computer Security Center. In order to assist in assessing the degree of trust one
could place in a given computer system, the DoD Trusted Computer System Evaluation Criteria
(TCSEC) was written. The TCSEC establishes specific requirements that a computer system must
meet in order to achieve a predefined level of trustworthiness. The TCSEC levels are arranged
hierarchically into four major divisions of protection, each with certain security-relevant
characteristics. These divisions are in turn subdivided into classes. To determine the division and
class at which all requirements are met by a system, the system must be evaluated against the
TCSEC by an NSA, Trusted Product and Network Security evaluation team.

The NCSC supports the creation of secure computer products in varying stages of development from
initial design to those that are commercially available. Preliminary to an evaluation, products must
go through the Proposal Review Phase. This phase includes an assessment of the vendor's
capability to create a secure system and complete the evaluation process. To support this
assessment a Preliminary Technical Review (PTR) of the system is done by the NSA. This consists
of a quick review of the current state of the system by a small but expert team and the creation of a
short report on the state of the system. If a vendor passes the Proposal Review Phase they will
enter a support phase preliminary to evaluation. This support phase has two steps, the Vendor
Assistance Phase (VAP) and the Design Analysis Phase (DAP). During VAP, the newly assigned
team reviews design specifications and answers technical questions that the vendor may have about
the ability of the design to meet the requirements. A product will stay in VAP until the vendor's
design, design documentation, and other required evidence for the target TCSEC class are complete
and the vendor is well into implementation. At that time, the support moves into DAP.

-1-
Revision 10.4 intro.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Introduction

The primary thrust of DAP is an in-depth examination of a manufacturer's design of either a new
trusted product or for security enhancements to an existing product. DAP is based on design
documentation and information supplied by the industry source, it involves little "hands on" use of
the system. DAP results in the production of an Initial Product Assessment Report (IPAR) by the
NSA assessment team. The IPAR documents the team's understanding of the system based on the
information presented by the vendor. Because the IPAR contains proprietary information and
represents only a preliminary analysis by the NSA, distribution is restricted to the vendor and the
NSA.

Products that have completed the support phase with the successful creation of the IPAR, enter
formal evaluation. Products entering formal evaluation must be complete security systems. In
addition, the release being evaluated must not undergo any additional development. The formal
evaluation is an analysis of the hardware and software components of a system, all system
documentation, and a mapping of the security features and assurances to the TCSEC. The analysis
preformed during formal evaluation requires "hands on" testing (i.e., functional testing and, if
applicable, penetration testing). The formal evaluation results in the production of a final report
and an Evaluated Products List (EPL) entry. The final report is a summary of the evaluation and
includes the EPL rating which indicates the final class at which the product satisfies all TCSEC
requirements in terms of both features and assurances. The final report and the EPL entry are
made public.

After completion of the Formal evaluation phase, product rated at BI and below enter the rating
maintenance phase (RAMP). The ratings maintenance phase provides a mechanism extend the
previous rating to a new version of an evaluated computer system product. As enhancements are
made to the computer product the ratings maintenance phase ensures that the level of trust is not
degraded.

Rating Maintenance is accomplished by using qualified vendor personnel to manage the change
process of the rated product during the maintenance cycle. These qualified vendor personnel must
have strong technical knowledge of computer security and of their computer product. These trained
personnel will oversee the vendor's computer product modification process. They will demonstrate
to the Trusted Product and Network Security Evaluation Division that any modification or
enhancements applied to the product preserve the security mechanisms and maintain the assurances
required by the TCSEC for the rating previously awarded to the evaluated product.

1.2 Document Organization

This report consists of four major sections and four appendices. Section 1 is an introduction.
Section 2 provides an overview of the system hardware and software architecture. Section 3
provides a mapping between the requirements specified in the Criteria and the System V/MLS
features that fulfill those requirements. Section 4 presents the evaluation team's personal opinions
about System V/MLS. The appendices identify specific hardware and software components to
which the evaluation applies, list the trusted computing base components in the system, provide a
bibliography for this report, and the evaluated product listing.

-2-
Revision 10.4 intro.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2. System Overview

This section begins with a brief description of the history of the System V/MLS system, and then
describes the security-relevant architecture and mechanisms.

2.1 System V/MLS Background and History

In 1969 Ken Thompson, Dennis Ritchie and other employees at Bell Laboratories developed the
UNIX* operating system, a time sharing system implemented on a Digital Equipment Corporation
model PDP-7 computer.

In 1973 UNIX was rewritten in the high level language C from the original assembler language. This
made the system more readily understandable and portable to different hardware bases.

The portability of the system led to its use on numerous hardware architectures. By 1977 the
number of sites using the UNIX operating system had grown to approximately 500. During the next
five years Bell Laboratories enhanced the system and eventually released the UNIX System I
version. The UNIX System IV version was internal to AT&T and not released commercially. By
1983 Bell Laboratories added several features and announced the System V version of UNIX.

In 1984-1985 the AT&T Federal Systems Division, which had been working towards the
development of a secure UNIX operating system, developed *SecPac', a UNIX operating system
add-on security package. SecPac provided rudimentary data sensitivity labeling, mandatory
protection, and a detailed audit trail. SecPac was then modified and refined into the current
System V/MLS product.

-3-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.2 Hardware Architecture

The AT&T System V/MLS Trusted Computing Base (TCB) consists of two primary elements: the
system hardware, and the system software. It is the purpose of the hardware to provide an
environment which the software can use to implement a complete and trusted interface to the
system. The following section will describe the hardware and how it provides the necessary support
for the system software.

2.2.1 Evaluated Configurations

The evaluated configurations of System V/MLS include two hardware models, the AT&T 3B2/500
and 3B2/600, with support for the AT&T 630 Multi-Tasking Graphics (MTG) terminal, the AT&T
4425 terminal, the AT&T 605 BCT terminal, and the AT&T 5310 printer. Both of the host
machine models utilize the WE 32100 Microprocessor and the WE 32101 Memory Management
Unit.

The AT&T 3B2/500 is configured with 4M bytes of RAM (8M bytes maximum), 147M bytes of
hard disk storage which is accessed through a Small Computer System Interface (SCSI) card, floppy
disk drive, 60M byte cartridge tape drive (SCSI interface), and support for a virtual cache option.

The AT&T 3B2/600 is nearly identical in architecture to the 3B2/500, with slightly different
standard components. The 3B2/600 is configured with 4M bytes of RAM (16M bytes maximum),
294M bytes of hard disk storage (SCSI interface), floppy disk drive, 60M byte cartridge tape drive
(SCSI interface), and a virtual cache card. The 3B2/600 also supports a multiprocessor
enhancement, which is not included in the evaluated configuration.

Both of these system models provide 32-bit data and address paths, as well as Error Correcting Code
(ECC) RAM to detect and correct single bit errors and detect double bit errors. Both provide
support for the WE 32106 Math Acceleration Unit.

The evaluated configuration includes three types of terminals: two ordinary terminals and an
intelligent terminal, the AT&T 630 Multi-Tasking Graphics terminal. The 630 MTG incorporates
640K bytes of RAM (IM byte maximum), a Motorola 68000 microprocessor and a bitmapped
display with a 1,024 x 1,024 resolution. The terminal allows a user to create multiple windows
operating concurrently at different security levels, allows window-to-window operations, and
provides a trusted communications path.

2.2.2 Hardware Components

2.2.2.1 Central Processing Unit Subsystem

System V/MLS utilizes the Western Electric 32100 Microprocessor (WE 32100 or CPU) to provide
computational and security functionality. The WE 32100 is a 32-bit central processing unit which
supports a 4 Gigabyte address space, via 32-bit data and address buses. The WE 32100 has a 64-
word on-chip instruction cache. All memory addresses for instruction fetch and data go through the
Western Electric 32101 Memory Management Unit (WE 32101 or MMU) in System V/MLS to
provide a virtual memory environment.

Sixteen 32-bit registers are available on the WE 32100, consisting of thirteen general-access registers,
and three kernel-privileged (for write access) registers. The kernel-privileged registers were designed
specifically to support the concept of a process within the CPU. This design provides a convenient
and efficient mechanism, upon which UNIX was built.

-4-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.2.2.1.1 Processor Execution Modes

The WE 32100 supports four execution modes: kernel, executive, supervisor, and user. Of these,
only kernel and user mode are used. The design of the 3B2 system hardware ensures that neither of
the other two modes is usable.

The execution modes serve two purposes; first, they dictate which instructions are available for
execution, and second, they are used by the MMU to enforce restrictions upon access to data.
Kernel mode is the most privileged; in this mode all instructions are available for execution. User
mode is the least privileged; all user programs are executed in user mode. Only the execution of a
system call transfers the processor from user to kernel mode.

2.2.2.1.2 Execution Mode Switching

The system call (gate) mechanism provides a means of controlled changes of the processor execution
mode by installing new Processor Status Word (PSW) and Program Counter (PC) register values.
If the new PSW has a different processor execution mode than the current PSW, a transition to the
new mode occurs.

The GATE and RETG instructions are used to switch processor execution modes (see 'Instruction
Set' below). GATE performs the actual PSW switch, from which the processor deduces its current
execution mode by examining the PSW value. RETG is used to return from the environment which
was 'GATEd' to, and in doing so, RETG forces the new execution mode to be less privileged than
or equal to the current mode.

2.2.2.1.3 Instruction Set

The CPU implements 179 instructions, of which 9 are provided to directly support operating system
functions. Those opcodes for which there is no corresponding instruction generate an illegal opcode
exception when executed.

The instructions designated for supporting an operating system are those that can change the
physical state of the processor, respond to interrupts, or permit changing the process that is
currently executing on the CPU. Of the nine operating system instructions, six require the
processor to be in kernel mode for execution. The kernel mode (privileged) instructions are:

" CALLPS,

" DISVJMP,

" ENBVJMP,

" INTACK,

* RETPS, and

" WAIT.

If these instructions are executed in other than kernel mode, a privileged opcode exception occurs.
The remaining three operating system instructions are: GATE, MOVTRW, and RETG, which may
be executed while the CPU is in any processing mode.

-5-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

The following is a discussion of the operating system instructions:

Call Process: CALLPS performs a process switch, saving the current process
image and entering a new process. CALLPS saves the context
(register contents) of the current process, pushes the current
Process Control Block Pointer (PCBP) onto the interrupt stack,
places a new PCBP into the PCBP register, sets the Process
Status Word, Program Counter, and Stack Pointer registers, and
then exits.

Disable Virtual Pin and Jump: DISVJMP changes the CPU to physical addressing mode
(disabling the MMU) and puts a new value into the PC register.

Enable Virtual Pin and Jump: ENBVJMP enables the virtual address pin for the CPU, allow'-g
the MMU to perform address mapping for the virtual
environment.

Interrupt Acknowledge: INTACK is used to generate an acknowledge signal from the CPU
to an interrupting peripheral. This allows the system to correctly
acknowledge interrupts.

Return to Process: RETPS terminates the current process (without saving its
context) and returns to the process whose PCBP is on the top of
the interrupt stack.

Wait for Interrupt: WAIT halts the CPU, stopping instruction fetching and execution
until an interrupt or external reset occurs.

Gate: GATE is used to change the value of the PSW and PC registers of
the CPU, potentially placing the CPU into a new processing mode.
The instruction retrieves new PSW and PC register values from a
protected memory area (write permission while in kernel mode
only) to prevent unexpected processing mode changes. GATE is
used in conjunction with RETG, for valid processor execution
mode switches.

Move Translated Word: MOVTRW tells the MMU to intercept the virtual address sent by
the processor, translate it, and return the physical address to the
destination specified in the instruction.

Return From Gate: RETG is very similar to a simple return from subroutine
instruction, with the exception that RETG enforces a linear
ordering of execution modes. The linear ordering will not allow the
new execution mode to be more privileged than the current mode.
RETG is used in conjunction with GATE to switch the execution
mode of the processor.

2.2.2.1.4 Registers

Sixteen 32-bit registers are provided with the CPU; nine of these registers are for general use (rO -
r8), while seven are special-purpose registers (r9 - r15). The intended functions for these registers
are described below.

-6.
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.2.2.1.4.1 Operating System Support Registers

The WE 32100 supports the abstraction of processes through the use of three kernel-privileged
registers, the Process Status Word, Process Control Block Pointer, and Interrupt Stack Pointer. In
this context, kernel-privileged means that the register can only be written while the CPU is in kernel
execution mode.

The Process Status Word (PSW or r11) contains status information about the microprocessor and
the current process. The PSW also contains four condition code flags used in transfer-of-control
instructions.

The Process Control Block Pointer (PCBP or r13) points to the starting address of the process
control block for the current process. The process control block is a data structure in main memory
containing the hardware context of a process when the process is not running. This context consists
of the initial and current contents of the PSW, Program Counter, and Stack Pointer; the contents of
the user registers; boundaries for an execution stack; and block move specifications (whether or not
block moves are allowed) for the process.

The Interrupt Stack Pointer (ISP or r14) contains the 32-bit memory address of the top of the
interrupt stack. This stack is used when an interrupt request is received. In addition, the stack is
used by the call process (CALLPS) and return to process (RETPS) instructions.

2.2.2.1.4.2 Conventional Registers

The CPU has nine general-purpose registers (rO - r8), the Frame Pointer, Argument Pointer, Stack
Pointer, and the Program Counter registers. These registers are all accessible (for both read and
write access) in any execution mode of the processor.

The general-purpose registers (rO - r8) are used for intermediate data storage, arithmetic, data
transfer, logical, and program control assembly instructions. Registers rO, rl, and r2 are additionally
used for string manipulation and transfer instructions and for return code values in C programs.

The Frame Pointer (rg) and Argument Pointer (riO) registers are used primarily for support of
higher-level programming languages. By convention, the Frame Pointer points to the beginning
location in the stack of a function's local variables. The Argument Pointer points to the beginning
location in the stack to which a set of arguments for a function have been pushed.

The Stack Pointer (SP or r12) contains the address of the top of the current execution stack, i.e.
the next available memory location on the stack for data storage. The Program Counter (PC or
r15) contains the address of the currently executing instruction or, on completion, the starting
address of the next instruction.

2.2.2.1.5 Interrupt Handling

The WE 32100 accepts fifteen levels of interrupts. An interrupt request is made to the processor
by placing an interrupt request value on the interrupt priority level pins of the CPU or by
requesting a nonmaskable interrupt by asserting the NMINT line of the CPU. Pending interrupts
are not acknowledged until the current instruction completes, except in the case of instructions
which must loop in the course of their processing, such as the MOVBLW (move block) instruction.
In the case of these instructions, interrupts are enabled at the end of each pass through the loop,
and disabled at the start of each pass through the loop.

The pending interrupt value is compared to the value contained in the Interrupt Priority Level
(IPL) field of the PSW. For the pending interrupt to be acknowledged, its inverted value must be

-7-
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report ATkT System V/MLS
System Overview

greater than the IPL value, except for the NMINT, which is always received.

The processor acknowledges an interrupt by placing the inverted interrupt request value on the
address bus. The interrupt request value is received by the interrupting device, which then returns
an 8-bit offset into the full interrupt table which then points to an interrupt handler for execution.
Upon completion of the interrupt handler, the next instruction from the interrupted process is
executed. For NMINT interrupts, the CPU assumes address Ox8c (hex 8c) contains the PCBP of
the interrupt handling routine; thus it transfers to this PCBP when an NMINT occurs.

2.2.2.1.6 Math Acceleration Unit

The WE 32106 Math Acceleration Unit (MAU) is supported in System V/MLS, and is used to
provide increased system performance. The MAU provides floating-point capability for System
V/MLS, in single, double, and double-extended precision. Operands, results, status, and commands
are transferred over an internal system bus, providing the interface to the host processor.

2.2.2.2 Memory Subsystem

System V/MLS makes use of the WE 32101 Memory Management Unit to provide a separate
virtual address space for each user. This virtual environment allows the system to support multiple
users, while maintaining separation between those users and the kernel code and data.

2.2.2.2.1 Memory Layout

The virtual address space is divided into four sections by the MMU; each section is up to 1G byte in
size. Two sections are used to map kernel address space, and two are used to map user address
space. Each section is then further subdivided into segments, which is in turn divided into pages.
Pages are 2K bytes in extent.

System V/MLS supports virtual memory by paging. The paging scheme allows a process to exist in
primary memory with a minimal memory requirement, thus allowing more processes to be active at
any given time than could actually fit into memory concurrently. At any point in time, some pages
for a given process may reside in primary memory while others exist on secondary storage. If a
process attempts to access a page that is not resident in primary memory a fault occurs, and the
needed page is brought in from secondary memory. The page replacement algorithm is called 'least
recently used second chance replacement'. See page 25, "Memory Allocation" for additional
information.

2.2.2.2.2 Address Translation Mechanism

The CPU generates a virtual address, which is translated by the MMU into a corresponding physical
address. This translation process involves the actual virtual-to-physical translation and checks to
determine that access should be granted to the requested memory page based upon the segment
based access permissions.

The MMU performs address translation (see Figure 1) using descriptors that contain the
information ,iecessary for segment and page mapping. The MMU has two types of descriptors:
segment descriptors (SD) for mapping the paged segments, and page descriptors (PD) for mapping
pages within the paged segments.

A SD consists of two 32-bit words. The first word czntains information about the segment, while
the second word contains the physical address for the Page Descriptor Table (PDT) for the segment.
Information within a SD identifies whether the segment is present in memory, has been modified, is
cacheable, has been referenced, what the access permissions for the segment are, and other data

-8-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

about the segment.

A Page Descriptor Table is associated with each memory segment in the system. The PDT
maintains page descriptors for each page within a segment. It is these page descriptors that
ultimately reflect the physical location of a memory page. Page descriptors are composed of
information such as the physical presence of the page, modified status, reference indicator, physical
address of page, and similar status data.

-9-
Revision 10.4 overview.nun (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Virtual Address Physical Address

Space SDT SpaceT Page 0

s Page 1

G Page 2

N Page 3

~ Page N

S PDT

0

E
N 1
T

22

Figure 1. Virtual to Physical Address Translation

- 10 -

Revision 10.4 overview.mmn (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.2.2.2.3 Cache Memory Support

System V/MLS is capable of supporting an optional virtual cache plug-in board (on both the AT&T
3B2/500 and 3B2/600). This virtual cache (Vcache) board examines the virtual address passed from
the CPU to the MMU, and determines if the address is a valid cache entry. If valid, the Vcache
performs the read/write that was requested by the CPU; if not valid, the Vcache allows the request
to continue into the MMU. When the data is returned from the MMU (on read operations), the
Vcache copies the data into its cache for later use; for write operations which are cache hits, the
cache is written through to main memory. When a process switch occurs, the Vcache is flushed.

2.2.2.2.4 Memory Protection Features

The MMU controls access to memory segments through the use of an access permission field in the
SD. Whenever a segment descriptor is used to perform a translation, the MMU checks the access
permission fields of the SD, the type of access being requested by the CPU, and the execution mode
at which the access is being requested. If the MMU determines that the access is not allowed under
the given conditions, an access rights exception occurs.

The MMU uses the execution mode (kernel, executive, supervisor, or user) at which the access is
being requested and the access permission field of the SD to determine whether access is allowed.
Allowable permissions are read/write/execute (RWE), execute only (EO), read execute (RE), or no
access (NA) permission to the segment. A segment has four sets of permissions, one for each
execution mode. All processes executing in a given execution mode receive the same access to any
given segment. The hardware prevents a process from operating in either supervisor or executive
mode, so the permissions for these two modes are never used.

Associated with each physical memory page is a 'page modified" bit which indicates whether the
page has been written to since last brought into memory. If this bit is set, then when the page is
deallocated, it will be written to secondary storage.

2.2.2.3 hIput/Output Subsystem

System V/MLS supports many devices in its standard and optional configurations: these include
floppy disk drives, fixed (hard) disk drives, cartridge tape drives, and a printer. Access to these
devices by the system (or users of the system) occurs via several system interfaces. These interfaces
are indirectly responsible for maintaining separation of information between multiple users, as
explained below.

The interface to an external device consists of two pieces: the I/O bus of the system and the plug-in
interface card. The I/O bus provides power and signal connections for the plug-in cards and simply
provides a means by which information is transferred between the CPU and external devices (via
the interface card). Interface cards are more complex since they often support multiple devices and
must be relied upon to store and retrieve information from/to the CPU. Given this increased logic
necessary on the interface card, we have examined the available interface cards to determine those
which are suitable in a trusted computing environment. An exhaustive list of components included
in the evaluated configuration is available in Appendix A of this report.

2.2.2.3.1 System Interfaces

This section of the report discusses the interface cards available, the functional aspects of each card
and how the card can be used in a trusted computing environment. Also included in this discussion
are plug-in cards that extend the system's capabilities, such as memory extension cards.

- 11 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.2.2.3.2 Ports (CMI95B) Card and HiPorts (CM195BA) Card

The Expanded 1/0 Card (also known as the Ports card) provides four separate asynchronous serial
port (RS-232C) interfaces and one parallel port interface. The maximum throughput of the Ports
card is 19,200 bits per second. The throughput of the Ports card model CM195BA (also known as
High Performance Ports card) is 38.4 bits per second.

The two models differ in their internal operation, with the CM195BA being capable of performing
with increased efficiency.

2.2.2.3.2.1 Implementation

The Ports card can be considered as having two distinct sections. The first is the serial and parallel
port interfaces. The second is the interface to the I/O bus, the Common I/O (CIO) hardware.

The serial and parallel port interfaces are implemented through the use of two Dual Universal
Asynchronous Receiver/Transmitter (DUART) chips and a CENTRONICS' parallel interface. The
DUART chips provide four asynchronous serial ports, denoted as subdevices SPO-SD3, which can
operate in either polled or interrupt mode. Hardware drivers are used to interfa, the DUARTs to
modems or terminals, per RS-232C specifications. The parallel port interface allows for polled access
to an external device (printer). Ports card firmware handles all handshaking with the external
device, and does not allow any interrupts from the device to be received by the system bus.

The I/O bus interface, known as the CIO hardware, is the second major component of the Ports
card. This section of the card is composed of an INTEL 80186 processing unit, Signetics 82S105 1/0
bus controller, several support registers, on-card RAM and ROM, and miscellaneous support logic.

The 80186 processor is responsible for the overall activity of the Ports card. This includes the relay
of information between the bus controller and the DUART chips, maintenance of on-chip registers
and memory, and the execution of any 'pump' code that is downloaded from the system. Pump
code provides a mechanism by which the actions of the card can be tailored by the host system; that
is, the card executes the pumped software versus the standard ROM code.

The 82S105 is the control interface to the system 1/0 bus. The 82S105 responds to three activities:
80186 read/write of main memory, system board read/write of the Ports card, and acknowledgement
of interrupts from the system board.

The support registers on the Ports card contain information such as the Identification Code of the
card, the Interrupt Vector of the card, a 128K byte address range assigned by the system unit in
accordance with its memory mapping, and control and status information of the Ports card
components.

The Ports card RAM is 32K bytes in sise, and accessible only by the 80186. This storage area
contains any downloaded code from the system unit and any locally stored variables. The ROM is
16K bytes in size and contains the firmware executed by the 80186. It is this firmware that provides
the basic capabilities and diagnostics of the Ports card.

1. CENTtONICS is a registered trademark of CENTRONICS Data Computer Corporation

- 12-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/WS
System Overview

A few routine diagnostic tests are run for the Ports card each time the 3B2 computer is powered up.
A complete set of diagnostics can also be requested through the use of the diagnostics monitor
(DGMON). Potential problems that are identified by the diagnostics routines include: defective
Ports card, defective I/O bus slot, defective system board, or defective diagnostic code, among
others.

2.2.2.3.2.2 Use In a Trusted Environment

The Ports card maintains separation between each serial port and the parallel port, ensuring that no
data will be compromised. The logic within the card is designed to simply forward information
between the system unit and peripheral device. The objective of this design is to ensure that any
security related control sequences (such as trusted path) will be passed to the system unit for
processing. The team has verified this through testing.

2.2.2.3.3 EPorts Card - CMI9Y

The Enhanced I/O Card (also known as the EPorts card) provides eight separate asynchronous
serial port (RS-232C) interfaces. The EPorts card provides the same features as the Ports card
(with the exception of the parallel port) with higher throughput (38,400 bits per second) and
hardware flow control.

EPorts supports the standard software flow control, as well as two methods of hardware flow
control. In one method, the receiving device must use the Request To Send (RTS) and Clear To
Send (CTS) signals for flow control. In the other method, the receiving device must use the Data
Terminal Ready (DTR) signal.

2.2.2.3.3.1 Implementation

The EPorts card is identical to the Ports card in its support of the eight asynchronous serial ports.
See page 12, 'Implementation' for a detailed discussion of the implementation.

2.2.2.3.3.2 Use In a Trusted Environment

The EPorts card maintains separation between each serial port, ensuring that no data will be
compromised. The logic within the card is designed to simply forward information between the
system unit and peripheral device. This design is intended to en ture that any security related
control sequences (such as trusted path) will be passed to the system unit for processing. The team
has verified this through testing.

2.2.2.3.4 SCSI Host Adapter - CM196W

The Small Computer System Interface (SCSI) Host Adapter Card provides an asynchronous, single-
ended SCSI bus interface. The bus interface is capable of supporting up to seven peripheral
controllers. The 3B2 computer can support up to eight SCSI Host Adapters simultaneously.

2.2.2.3.4.1 Implementation

The SCSI Host Adapter card can be considered as having two distinct sections. The first is the
SCSI protocol controller. The second is the interface to the I/O bus, the CIO hardware, as discussed
previously.

- 13-

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

The SCSI protocol architecture can be viewed as consisting of four protocol levels:

Level 0- is the electrical interface and signaling protocol defimed in the ANSI
specification. This level is implemented in hardware, under the
control of the Host Adapter firmware.

Level 1- is the message system that the Host Adapters and controllers use to
communicate. It is used to transfer information about the bus,
controller, and request status under control of the firmware in the
Host Adapter and controllers.

Level 2 - is defined as the SCSI command level, to provide a means to direct
the controller's activity.

Level 3 - is defined as the user interface to the target drivers. Examples of this
level include user requests such as read, ioe , etc.

Levels 0 and 1 are implemented within the SCSI Host Adapter through the on-card NCR 5386 SCSI
Protocol Control Chip (SPCC). The SPCC is controlled by an INTEL 80186, part of the CIO
hardware, which regulates data flow between the I/O bus and the SPCC, and ultimately controls
flow to external peripheral devices.

The SPCC is responsible for translating data between the CIO expected format and the SCSI bus
format. This translation occurs at the request of the 80186, via CIO initiated requests and in
response to interrupts from peripheral devices.

The SCSI Host Adapter is capable of receiving software from the host system, and executing that
software within the 80186. Use of the SCSI Host Adapter in this manner allows the system to be
customized according to the configuration of peripherals.

The SPCC is supported by several status registers, which are used to indicate the status of the SCSI
card, transactions, and interrupts.

The SCSI Host Adapter has three basic types of diagnostics available. The SCSI Host Adapter
performs diagnostics during power-up, system boot, and at the request of the system administrator.
The diagnostics performed basically determine that the SCSI Host Adapter operation is functionally
correct.

2.2.2.3.4.2 Use In a Trusted Enviromnent

The SCSI Host Adapter maintains separation between the devices connected to its bus. This
separation ensures that no data will be transferred to the wrong peripheral. The logic within the
card is designed to forward data between the system unit and peripheral devices. It is the
responsibility of the system unit to specify which device is to receive the data and to store any
sensitivity label information with the data. The team has tested this unit to provide assurance that
it is capable of appropriately separating data between peripheral devices.

2.2.2.3.5 Memory Extensions

The 3B2 computer supports several memory extension cards; the cards available are: 2M byte -

CM523B, 4M byte - CM523A, and 16M byte - CM523D. These cards provide an extension of the
random access memory used by the system, thus allowing increased system performance. Each of
these cards contains 32-bit RAM with 12-bit Error Correction Codes, capable of detecting all two-bit

- 14-

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MLS
System Overview

errors and detecting and correcting all one-bit errors.

The memory cards indicated above are controlled and maintained by the operating system of the
computer, and are trusted to maintain the integrity of the data which is stored within the card.

2.2.2.3.6 Virtual Cache Board - CM522A

The Virtual Cache (Vcache) Board is used to provide a virtual cache environment for the system
unit. See the discussion on page 11, 'Cache Memory Support' for additional detail.

2.2.2.3.7 Interface Cards not In Evaluated Configuration

The following components were not configured into the system which the team evaluated. As such,
they are excluded from the evaluated configuration.

2.2.2.3.7.1 Coprocesor Board - CM527A

The Coprocessor Board utilizes the WE 32100 microprocessor to provide coprocessing assistance to
the system unit. Coprocessing systems may present additional obstacles to implementation of a
trusted system, and the vendor has chosen not to submit this coprocessing package to the team as
part of the evaluated configuration. As such, the Coprocessor Board is not considered an option for
use in a trusted computing environment, and not included as an acceptable feature card for the
System V/MLS system in its evaluated configuration.

2.2.2.3.7.2 Network Interface Card - CM195A

The Network Interface Card is used to connect the 3B2 computer to other 3B2 computers and
ETHERNET2 compatible interfaces. The functionality provided by the Network Interface Card is
such that all computer systems with access to the transmission cable are capable of accessing any
data which is transmitted on the network. The Network Interface Card is not capable of ensuring
that sensitivity labels associated with data will be maintained during transmission. From a security
standpoint, this functionality is unacceptable and prevents the Network Interface Card from being
considered an option for use within a trusted computing environment.

2.2.2.3.7.3 Network Access Unit - CMI95U

The Network Access Unit is used to connect the 3B2 computer to an AT&T STARLAN Network.
The functionality provided by the Network Access Unit is such that all computer systems with
access to the transmission cable are capable of accessing any data which is transmitted on the
network. The Network Access Unit is not capable of ensuring that sensitivity labels associated with
data will be maintained duiing transmission. From a security standpoint, this functionality is
unacceptable and prevents the Network Access Card from being considered an option for use within
a trusted computing environment.

2.2.2.3.7.4 Remote Management Package/Alarm Interface Circuit - CM195AA

The Alarm Interface Circuit (AIC) card is designed to provide an interface between the 3B2
computer and certain external devices, and to allow three different specific functions: allow for a
remote console terminal; generate external alarms when the system's sanity has failed; and provide

2. ETMHET s a trademark of the XEROX Corporation

. 15-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/H4LS
System Overview

panic alarm capability, via an interface to other external devices. Of these functions,
implementation of the first would invalidate the system's rating by providing for an extension of the
TOB hardware outside of the protective perimeter in which the CPU and peripherals reside. The
other two are ineffective unless the AIC is connected to some monitoring device external to the
machine. In the latter case, the monitoring equipment would not have been evaluated, and as such,
cannot be trusted not to violate the system's security policy. Thus, the Alarm Interface Circuit
board may not be considered an option for use within a trusted computing environment.

2.2.2.3.8 Input/Output Devices

As with most machines, the 3B2 computer relies upon external peripherals to perform useful
services. Peripherals such as fixed disks, floppy disks and tapes are widely used in the 3B2
computing environment. The previous discussion regarding I/O device interfaces, discussed the
mechanism by which external peripherals can be connected to the 3B2. See Appendix A for a list of
devices which may be connected to the system, and trusted to maintain the integrity of the data
that flows through or into the device.

It should be noted that the system must have a 'console', which is a terminal plugged into a special
port reserved for that purpose on the system board. The console functionality is the same as all
other terminals on the system (all users must login to access the system), except that some system
software directs error messages and notification of significant events to the console. Often a printer
is connected in parallel with the console, to generate a hardcopy of these messages.

2..3 The 630 MTG Intelligent Terminal

The evaluated configuration of System V/MLS includes an intelligent terminal, the 630 MTG
(Multi-Tasking Graphics) terminal, which can be used as a user's terminal. The 630 MTG terminal
provides capabilities that include:

- the ability to scroll,

- the ability to save text in any window,

- the ability to cut/paste/send text from one window to another, and

- the ability to attach up to two System V/MLS hosts.

The terminal firmware demultiplexes the communications from each host, passing the data to the
terminal resident program (wproc) controlling each individual window. This is accomplished on the
630 MTG side of the physical port by a demultiplexer/controller, demuz, which receives the
communications from the host. There is one demux per physical port. Data intended for a given
host window is simply passed to that window's wproc while control information (i.e., download
initiation signal) is handled directly by demuz. More information on uwproc will be found on page 74,
"wproc*. The terminal firmware also interprets commands to create, delete, move, and reshape
windows, and manages other terminal capabilities such as cut/paste.

There are a number of security-relevant aspects to such a device. The following description of the
implementation of the 630 MTG terminal provides an outline of those issues.

The 630 MTG contains a Motorola 68000 microprocessor and 640K bytes of dynamic RAM
(expandable to IM byte). The 630 MTG also contains 384K bytes of EPROM, with a cartridge
port on the side of the unit allowing an additional 384K bytes of EPROM to be plugged in. There is
no memory management or paging functionality implemented in the terminal hardware. The video
display is bitmapped, with a resolution of 1,024 x 1,024 pixels. The terminal incorporates two RS-

- 16-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATT System V/MLS
System Overview

232 ports for communications with one or more hosts. The terminal supports a printer which is
disabled in the evaluated configuration, since its output would not be labeled according to the
labeling requirements 3. The terminal also supports a mouse for easy manipulation of the terminal's
many features.

The terminal runs a trusted version of the standard 630 MTG terminal emulator firmware, which
implements a trusted communications path between the user and the host computer in addition to
providing labeling, mandatory access control, and preventing object reuse in accordance with the B1
requirements. Communication between the terminal and the trusted host software takes place via
one of the 16 virtual terminal connections, 8 virtual terminal connections (channels) per host, which
the 630 MTG terminal is capable of supporting. All control communication, such as setting up and
labeling windows, is carried by channel 0 (virtual terminal device 0, referred to as "xtnm0", where n
and m are digits used for terminal identification only, and will henceforth be omitted). User
windows may occupy channels xtl through xt7 on each host connection. The control window, xt0,
is invisible to the user.

The host device driver (xt driver), which communicates directly (sends data over the physical
connection) with the 630 MTG terminal, ensures data separation at the virtual terminal level, much
as ports ensure data separation at the physical terminal level. The details on how this is
accomplished are described on page 74, "Window Labels'.

The 630 MTG does not provide memory management within its local address space, so no program
which is untrusted may be downloaded and run on the 630 MTG without invalidating the system's
rating. For this reason, it is only possible to download code from the directory /tsr/dmd/bin, in
which only trusted code resides. Downloading may only occur through the action of
/sr/bin/dmdd, which is hard-coded such that it will only download programs from that directory
(see page 78, "Downlodable Software"). The evaluated configuration includes two such programs:
fw.mods and chk630. These are explained on page 72, "The 630init Process'.

There are four major 630 MTG firmware components:

" System - contains the round-robin scheduler, system initialization logic and system
processes that handle global mouse interaction, window manipulation, key translation
and host I/O multiplexing.

* Application - contains application level processes that perform terminal emulation,
set the terminal characteristics and program the programmable function keys.

" xt protocol - implements a communication protocol between the host and 630 MTG.
This is the protocol used in the layers environment.

* Libraries - contains routines used by firmware components and downloaded
programs. The library routines are accessed through the firmware vector table,
which is a table containing addresses of functions and global variables which are
indirectly called and accessed by the 630 MTG. The firmware vector table is located

3. Physical security is relied upon to prevent the printer from being enabled after the initial 630 MTG terminal session
connection with the host is made. The printer is initially assured to be disabled as part of the terminal initialiration
process.

- 17-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

after the exception vector table in RAM and is located before a 4K byte pad area
which exists in case the vector table (or ROM bss, which is on the other side of the
pad area) needs to be extended.

2.2.3.1 630 MTG Memory Layout

The 630 MTG does not support virtual addressing and has no memory protection except that
provided by using ROM to hold the terminal firmware. The 630 MTG memory is displayed as:

- 18 -SRevision 10.4 overview.ram (Revised 5/24/91)

Fizal Evaluation Report AT&T System V/MIS
System Overview

000000
Low Memory

1Vector Table(s)

EPROM Libraries Text

Data Section

Reserved
100000

Cartidge (append) NOT USED

I/O Registers
____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 4000W0

Expansion I/0 Card 0
700000

Video Controller
_______________________________________ 760000

Video RAM 8
780000

Vector Table(s)

Pad Space

Program ROM bss
RAM

Cartridge be# NOT USED

Available
800000

[Expansion AM CARD

NVRAMj

Figure 2. The 630 MTG Memory Layout.

- 19-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Figure 2 from top to bottom describes the memory layout of the 630 MTG. The first item in low
memory is the table of interrupt/exception vectors. These interrupt vector entries point to the
interrupt vector table in RAM. The RAM interrupt vector table entries contain jump instructions
to the real interrupt/exception handlers in ROM. Following the interrupt/exception table is the
firmware vector table which gets moved to RAM with initialized data structures on reboot. All
firmware function calls go through the RAM table, whereas interrupts/exceptions go through both
tables. Following both these ROM vector tables are the text and data sections of the firmware.
These are the components of the standard EPROM.

Video RAM is dual ported so that video control and CPU processing can proceed simultaneously.
Following the video RAM are the RAM interrupt/exception vector table (pointing to ROM located
handlers) and the RAM firmware vector table (pointing to ROM located firmware routines). The
pad area exists so that the firmware can be modified and thus grow in size.

The Non-Volatile Read-Access Memory (NVRAM) is battery backed and holds terminal setup data
and the character strings associated with the programmable function keys.

2.2.3.2 630 MTG Memory Management

The 630 MTG performs memory management through its firmware; there is no special hardware to
manage memory. The main tasks in managing memory on the 630 MTG are to save and retrieve
portions of windows which may become obscured by other overlapping windows, and to support the
downloading functionality.

There are three types of memory, which are illustrated in Figure 3: memory blocks obtained from an
alloc pool, a gcalloc pool and a combination of the two called a gcastray block.

- 20-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

sDoc grows up gcafloc grows down

alloc alloc gcastray allc . gcalloc

block block block block block

alloclevel :

gclevel
,al ci t

Figure 3. 630 MTG Memory Management.

- 21.

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Memory allocated with alloc starts at the low end of user memory space and grows upward in
memory. It is non-compactible and is therefore limited by some upper bound stored in the variable
alloclimit. Alloc employs a first-fit algorithm, combining contiguous free blocks. Aoc zeros out the
requested memory (i.e., fills with zeros). Blocks cannot be allocated with alloc past alloclimit or
beyond the first block allocated via gcalloc encountered by alloc (the gclevel). Memory allocated via
alloc is used for downloads, thread stacks, window structures, PFkeys, and other general dynamic
storage (identified on page 71, 'The 630 MTG Terminal Implementation).

Gealloc stands for garbage collectable allocated memory. Memory allocated via gcaboc starts from
the high end of user memory space and grows downward in memory to the allocevel boundary and
is compactible. Gcalloc allocates blocks from the lower level of the pool (i.e., it lowers gclevel). If
there is not enough space at the low end of the pool (i.e., if it reaches alloclevel), the pool is
compacted towards its upper boundary. Memory allocated via gcalloc is primarily used to store lines
of text in windows.

Gcalloc allocates blocks in the alloc pool when there is not enough space in the gcalloc pool after

compaction to satisfy a request. A block allocated this way is referred to as a gcastray block.

2.2.3.3 Use in a Trusted Environment

The 630 MTG terminal allows a user to work with multiple terminal sessions operating at various
labels connected to one or two hosts. Only one user login session per host is active, although many
host connected and local windows can be active at any time. The 630 MTG provides an interface
which appears as a complete and independent terminal device to each host process connected to the
terminal. In order to implement this functionality, the terminal firmware partitions the terminal
memory to support up to eight per host windows (seven windows accessible to the user; one for
control information).

When using both physical ports on the 630 MTG terminal, it is required that the accredition ranges
of both hosts be identical. This is required because the overall rating of System V/MLS is B1, and
the combination of two System V/MLS systems connected via the 630 MTG terminal must also be
considered a B1 system4 .

Additionally, the administrators on both systems should coordinate any decisions regarding
downloadable software. Any software downloaded into the 630 MTG terminal can affect the trusted
capabilities of the 630 MTG terminal.

Although the evaluated configuration of the 630 MTG terminal does not incorporate all of the
functionality of the stock 630 MTG, it still retains a wide variety of useful capabilities unique among
the systems evaluated to date.

2.2.4 Physical Security Considerations

The AT&T 3B2/500 and 3B2/600 computers, on which System V/MLS runs, have physical
dimensions which are small enough so that the entirety of the TCB hardware could easily fit on or
under a desk in the average office. Because of this small size, it is especially important to note here
that there are certain physical security considerations involved in appropriate deployment of any

4. When accrediting a system with multiple hots and multiple 630 MTG terminals, care should be taken to place no more
trust in the data separation capabilities of the 630 MTG terminal than that afforded by a B1 system.

- 22 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/NLS
System Overview

computer system which is expected to process sensitive information.

Primarily, the system administrator must understand that any computer relies upon its physical
security as a basis for all other security which it provides. A computer which is left unattended and
unprotected in the presence of untrusted individuals is liable to be tampered with; therefore, the
system administrator should take precautions that all elements of the TCB hardware are protected
in a fashion appropriate for the most sensitive information on the system. The single exception to
this rule is that remote devices, such as terminals and printers, should be protected as appropriate
for the most sensitive information which they are capable of accessing. For example, a terminal may
have a device maximum of SECRET, althbugh the system high is TOP SECRET; in this case, the
terminal should be protected as though it is SECRET information.

2.2.4.1 The Firmware Password and The Floppy Key

As an additional security enhancement, the 3B2/500 and 3B2/600 computers require a password
before allowing access to "firmware mode', from which system diagnostics and other low-level
functions (including selection of bootstrap load device) may be accessed.

Since use of the firmware password is likely to be an infrequent event, it is quite possible that the
system administrator may forget the firmware password. To remedy this problem, the 3B2/500 and
3B2/600 come with a device referred to as the "Floppy Key." This is a floppy diskette which is
keyed to the serial number of the particular 3B2 computer on which it was generated. The Floppy
Key is meant to be used in one of two cases: either the root or firmware password is lost, or the
system battery is weak and parts of the system Non-Volatile RAM (NVRAM) become unreadable
and must be restored.

The Floppy Key may be used to reset the system NVRAM to its default values, and to gain access
to the system in firmware mode. It is therefore imperative that the Floppy Key be afforded the
same protection that would be provided for the most sensitive data on the computer with which it is
associated.

- 23 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATMT System V/MLS
System Overview

2.3 Software Architecture

System V/MLS enforces security through the use of hardware (as previously discussed) as well as
software. The software of the system provides the interface to the TCB and is responsible for
determining access to the objects controlled by the system. The following is a discussion of the
system software architecture and the mechanisms provided within the kernel.

2.3.1 TCB Boundary

First it is important to note the boundary of the TCB. The TCB is made up of hardware, firmware,
and software components. Hardware and firmware comlonents were discussed previously on page 4,
'Hardware Architecture' and on page 16, 'The 630 MTG Intelligent Terminal'. Software
cot iponents consist of all trusted routines. Trusted routines are all routines running in kernel space
(including 630 MTG terminal routines) as well as trusted processes running in user space. The
system's kernel contains those routines running in kernel space and are listed in Appendix B.
Trusted processes are defined on page 63, 'Trusted Processes', and are listed as part of Appendix C.
The kernel, trusted processes, and 630 MTG terminal will now be discussed.

2.3.2 Kernel Architecture

2.3.2.1 Overview

The System V/MLS software architecture can be viewed as a series of conceptual layers. It is
important to note that the term 'layer' as used in this sense throughout this section is in no way to
be confused with the system engineering technique of *layering' that can be found in the design of
higher level TOSEC systems. The innermost layer is the system hardware, followed by the kernel
routines and system commands. User programs may then logically be viewed as being built upon
the system commands and kernel interface, in the outermost layer.

2.3.2.2 Hardware Layer

System V/MLS takes advantage of the processing modes provided by the hardware layer (see page
4, *Hardware Architecture*) to provide isolation between the system and user spaces. The two
execution modes used by the system are:

User mode: Processes in user mode can access their own instructions and data but
not privileged instructions and data (or those of other processes).
Execution of privileged instructions results in an error.

Kernel mode: Processes are permitted the execution of -I system instructions and
can access kernel and user addresses.

2.3.2.3 Kernel Layer

The kernel layer provides the system call interface between user programs and the TCB. The kernel
performs various primitive operations on behalf of user processes to support the user interface
described below. Among the services provided by the kernel are:

- Controlling the execution of processes by allowing their creation, termination or
suspension, and interprocess communication.

- Scheduling processes fairly for execution on the CPU.

- Allocating main memory for processes.

.24.
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/LS
System Overview

- Allocating secondary storage for long term data storage.

- Allowing processes controlled access to peripheral devices such as terminals, tape
drives and disk drives.

The kernel provides its services transparently for the user. When a process executes a system call,
the execution mode of the process changes from user mode to kernel mode, and the operating system
executes and attempts to service the user request.

2.3.2.3.1 Scheduing:

Processes share the CPU in a time-shared manner, meaning each process is allowed up to one second
of execution time at any one time. If a process happens to be in the middle of a system call at the
one second interval, then that process is permitted to finish the system call before it is preempted.
Processes are also preempted when they request a time consuming task, such as physical I/O, or are
waiting on a synchronisation event.

Once the current process has been preempted, the process with the highest priority is chosen from
the ready queue to run next. Processes are given a priority based upon a compute time/elapsed time
ratio and a fixed priority class. For example, system processes are given a higher priority class than
user processes. Processes at the same priority are effectively executed in a round-robin fashion.

2.3.2.3.2 Memory Allocation:

The kernel and all user processes operate in virtual address space. The hardware divides the virtual
address space into physical pieces called pages. Each of the four sections of virtual address space is
composed of segments which are in turn composed of pages. Regions are the logical representation
of pieces of virtual address space as viewed by the system software. Data tables are maintained by
the kernel to provide virtual to physical address translation.

As stated previously, there are four sections of virtual memory, each one having a separate segment
descriptor table (SDT). The SDTs are located in physical memory and contain the segment
descriptors (SDs). Each segment has one page descriptor table (PDT) which contains its page
descriptors (PDs). Segments are thus represented by both a SDT entry and an entire PDT.

System V/MLS manages memory by maintaining regions for each process. The regions allocated to
a process define the memory space that the process can use during its lifetime. Every process has a
pointer (through its process table entry, see page 30, 'Process Table') to a data structure known as
a process region (pregion) table. At system start up time, memory is allocated for the pregion
tables, and a pregion table is associated with each process slot in the process table. Pregion entries
contain information about the connection of a region to a process. Pregion entries map to region
table entries which contain a list of SDs. These SDs point to page tables which map to physical
pages for the region. This list of SDs is called an rlist. The system region table (region table)
contains entries for all active regions on the system. The region table entries contain all the
information needed to attach a region to a process. The translation from virtual to physical address
is performed within the hardware (see page 8, 'Address Translation Mechanism') using this
information. When a process is created, it has two SDTs associated with it (as there are two SDTs
which map user address space), as part of the process structure. The SDT is a one to one mapping
to an rlist of an attached region. When a process becomes active, the rlists for the attached regions
are loaded into the appropriate SDT and the address of the SDT is loaded into an MMU register.
This segment table information is then used in resolving virtual addresses.

.25.
Revision 10.4 overviw mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

A region is actually a virtually contiguous piece of memory that can be associated with some logical
function. The typical types of regions associated with a process are text, data and stack. Two
additional types of regions, however, may also be associated with a process; shared memory and
shared text (e.g. libraries).

Shared memory regions are associated with a process through the utilization of the IPC shared
memory mechanism known as 'shared memory segments'. The shared memory IPC mechanism
provides system calls to facilitate the use of regions in a shared manner. The shmget system call
creates a shared memory region by allocating a region data structure and placing a pointer to the
region table entry in a table known as the shared memory table. The shared memory region is
attached to the virtual address space of the process through the shmat system call by allocating a
pointer from the pregion table to the associated region table entry.

The sharing occurs when one or more processes attach to the same shared region. This is achieved
when processes call shmat and provide it the same ID (which was returned by the shmget call when
the region was created). Before a process can successfully attach to a shared region, however, it
must have appropriate discretionary access control permissions for the region. Permission bits for a
shared region of this type are kept in its shared memory table entry. Further information on DAC
on shared memory objects can be found on page 43, 'DAC on System V IPC Objects'. Once a
shared memory region is allocated to a process, it becomes part of the virtual address space of the
process and is maintained by the system in the same manner as are other types of regions.

Shared text regions are also maintained in the same manner as are other regions, but allow for
sharing through a completely different method. The header of an executable load module indicates if
its text is to be shared. If so, the kernel looks for the original text region in the active region list
and if found, attaches it to the process. If a shared text region does not yet exist, a new region
(created RE) is attached to the process.

Memory allocation illustrating the use of shared memory and shared text is shown in Figure 4. Note
that Process A and Process B are sharing a text region, and Process B and Process C are sharing a
shared memory region.

To enhance the effectiveness of the use of shared text, a mechanism known as the "sticky-bit' is
provided. The sticky-bit is one of the file mode bits associated with every file. The system
administrator can set this bit for an executable file through the chmod system call. When a process
executes a file that has its sticky-bit set, the text of the file remains in memory even if its region
reference count drops to 0. This allows frequently used text regions (i.e., shared text) to remain in
memory and thus spare the kernel the overhead of repeatedly having to bring shared text regions
into memory.

Given that the demand for memory is often greater than the amount of physical memory available,
the system supports page replacement. The algorithm, known as 'least recently used second chance
replacement', provides for a fair replacement strategy. To implement this algorithm, two bits are
needed: that the page has been referenced by a process. The need reference bit indicates that the
page hasn't been referenced, but will probably be referenced soon. When a page is aged the first
time, the reference bit is cleared and the need reference bit is set. On the second aging pass, if the
reference bit is clear and the need reference bit is set, then the need reference bit is cleared. If both
bits are clear, the page is available to be replaced.

- 26 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/NWB
system Overview

Preglon Table A D

Data S D

SystemI RegiO) TaleD

SD o w

SDD

Shrd txt sShare ReMeo TablTable

Proucess Sharee MeD Scem

Revwon 1.4 Regin~ (0vsd52/1

Final Evaluation Report AT&T System V/MLS
System Overview

2.3.2.4 Comnand Layer

The command layer provides a convenient interface that lisers can utilize to request system services.
The TCB interface at the command layer is composed of those commands provided with System
V/MLS, as described in Appendix C.

The "shell, /bin/sh, is the System V/MLS security enhanced Bourne shell command interpreter.
The shell is actually both a command interpreter and a programming language. In either regard, it
provides an interface to the TCB through which users may execute system and user provided
programs which utilize lower level system services. The shell allows for control-flow primitives,
parameter passing, variables and string substitution as well as allowing users to customize their own
working environment.

The shell is trusted not to modify the information provided by the user and to ensure that it will
invoke the actual program specified. System V/MIS incorporates two major changes in the shell in
order to increase its level of trust. Upon invocation of a child shell process, the shell will reset the
effective UID/GID of that process to its real UID/GID (for discussion of the various process IDs, see
page 30, "Process Data Structures'). Additionally, the shell will enforce that any shell scripts run
by root must be trusted shell scripts. This is done by checking that the label on the shell script is
level 0, SYSTEM, (see page 53, "System Software Integrity') before allowing its execution by root.

For system administrators, the command layer of the TCB provides many programs that can be
used to configure, maintain, and control the activities of the system. Functionality provided for the
administrator includes adding users, changing file ownership information, and reviewing audit logs.

Those files that the system administrator must rely on to perform his/her duties are considered part
of the TCB. For these files, one or more of the following are true:

- the file runs in a privileged execution mode; this occurs when a file is SUID or SGID
to an administrative ID, or must be run by an administrator (see page 63, "Trusted
Processes').

- the file may be read only by an administrator.

- the file may be written only by an administrator.

2.3.3 Filesystem

2.3.3.1 Filesystem Overview

The System V/MLS filesystem is a secondary storage allocation and management system for regular,
directory and pipe files (see page 36, "Objects"). The kernel allocates secondary storage for user
riles, reclaims unused storage, and protects user files from illegal access. The filesystem has a tree
structured hierarchy. At the base of the tree is the root directory (referred to as "/). Every non-
leaf node of the tree is a directory of files, and files at the leaf nodes are either directories, regular
files, or special files. Files are referenced by a path name, which describes the location of the file
within the tree hierarchy.

Special files (also named pipes and directories) are created via the mknod system call, which is
similar to creat in that an inode is allocated for the file. For special files, rnknod writes a major and
minor device number into the inode. The user interface to special files is through the filesystem. The
special file occupies a position in the directory hierarchy of the filesystem. Additionally, the normal
filesystem system calls (e.g., open, close, read, write) have an appropriate meaning for special files.
Files on System V/MLS do not assume any unique structure based upon their cotitent. All files are

-28-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/NLS
System Overview

stored in a similar fashion, and any meaning associated with the stored information is determined by

the program accessing the file.

2.3.3.2 Internal Representation

Inodes are internal, TCB supported storage objects which are used to define and maintain filesystem
based objects. The inode contains information related to filesystem objects such as ownership, GID,
owner/group/other access permissions, object size, access times, and physical disk addresses for data.
Every filesystem object has one inode, but may have several names, all mapping to the same inode.

Inodes are referenced via an inode pointer, stored in a directory. The directory contains pairs of
filesystem object names and inode pointers. This allows multiple name/inode pointer pairs to refer
to the same inode, allowing multiple names for inodes (and thus files).

2.3.4 System Initialization

The act of loading the kernel system image into memory and starting its execution is known as a
system boot. System boot occurs whenever the system is started from a power-up, following system
crashes and intentional system shutdowns.

System boot occurs in several phases. In the first phase, the computer hardware loads and executes
the first block of data from the bootstrap disk. This data block contains a short bootstrap loader
program which finds and loads the file named /uniz in the root directory. The rile /unix contains
the machine instructions for the operating system kernel, and its execution comprises phase two of
the system boot procedure.

In phase two, the kernel initializes the essential hardware elements of the system, such as the system
clock and memory management unit. The kernel also defines system data structures which will be
used to support and maintain processes. The kernel then begins to create process 0, the sched
process. Sched is created by defining process 0 within the system process maintenance tables.

The system then copies process 0 to create process 1. Process 1 is expanded in size and the machine
instructions to invoke /etc/init are placed within its code region. Process 1 is placed in the CPU
ready queue, and invoked by the system scheduler.

Upon invocation by the scheduler, process 1 is considered the init process. The init process is
responsible for setting up the process structure of the System V/MLS system. Init creates a new
process called getty for each login device available on the system. Getty waits for a user to attempt
to login at the terminal port associated with the program. During the time when init spawns such
processes allowing users to login to the system, a transfer is made to multi-user mode. At this time
the filesystem is examined to verify its correctness (by /etc/fsck) and the system audit mechanism
is invoked (/mlbin/satstart).

When a user starts to login to the system, getty adjusts the line protocol and overlays itself with a
new program, login. Login checks and validates the password provided by the user. If the password
is valid, login then invokes the user's first process. The first process is usually the "shell". For
further information regarding the login process, see the discussion on page 59, "User Identification
and Authentication".

2.4 TCB Protected Resources

- 29 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.1 Subjects

In System V/MLS, the subjects are processes which execute on behalf of the users. Processes, which
may be thought of as programs in execution, are composed of the following logical sections of virtual
address space: text, data, stack, and any shared memory regions. The kernel has its own text, data
and stack regions. The system region table contains regions for every active process. Users cannot
access the kernel regions, but can request the kernel to work on their behalf by using system calls.

2.4.1.1 Process Data Structures

The data structures associated with processes are the process table, the user area, and the process
region table. These tables define the context of a process.

2.4.1.1.1 Process Table

The process table, which always remains memory-resident, defines process information to the TCB.
Non-privileged users may indirectly modify their own process table entry through the use of system
calls.

Important Process Table Fields are:

- process state
Identifies the status of the process (e.g. ready, waiting, running, sleeping, blocked)

- process priority
The scheduler uses this information to determine which process will be selected to
run. The priority is adjusted when a clock interrupt is generated.

- real user ID (RUID)
Records the login ID number of the user responsible for the process. It can be
changed by su. The real and effective user IDs of a process are inherited from its
parent.

- saved user ID
The effective user ID number of the process at the time of program invocation exec(.
It can be changed by su and other setuid to root programs.

- process ID (PID)
The TCB assigns a number which at any given time uniquely identifies that process.
The TCB assigns process IDs sequentially.

- parent process ID (PPID)
The process ID of the parent process.

- process group ID (PGID)
A process group is a set of processes sharing the same control terminal. The process
group ID is the process ID of the process from which all the other process group
members are descendents. The kernel uses the PGID to identify a set of processes
that should receive a common signal for certain events.

- a signal field (phold)

Each bit position represents the status (i.e. whether the process is or is not accepting
that signal) of a signal for that process.

- 30 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/LS
System Overview

- a signal field (psig)
Each bit position represents whether a signal has been posted for that process.

- a pointer to this process's parent process table entry.

- a pointer to the children of this process
If a child dies and has children of its own, then the children are inherited by iit, via
the exit system call.

- a pointer to the process region table - (see Figure 5)

- a pointer to the process's user area

2.4.1.2 User Area

Every process in the process table is allocated a user area which, when paged into memory, is
located in kernel address space. User areas contain information that the kernel uses when a process
is executing. Only the kernel can directly access the user area of the executing process.

Important fields in the User Area are:

- pointer to the process table - (see Figure 5)

- real and effective user IDs - previously defimed

- real group ID
Identifies the group associated with the process.

- effective group ID
Identifies the current group ID associated with the operating process. This may or

may not be the same as the real group ID and is changed via the setgid mechanism

(see page 44, "Setuid/Setgid Mechanisms' '.
2.4.1.3 Process Region Table

Each process region table (pregion table) is a table used during the mapping of a process's virtual
address to physical address. For the implementation details, see page 25, *Memory Allocation*.
The kernel accesses the process region table to identify information about the type and virtual
address of a region. Each process has its own process region table.

The Process Region Table Entry Fields are:

" a pointer to the entry in the system region table (the region's descriptor)

" the starting virtual address of the region

" a type field (e.g., unused, text, data, stack, shared memory)

" read-only flag

Entries in the system region table contain the following fields:

* type of the region (e.g., unused, private (not sharable), shared text, shared memory)

* various status flags (e.g., loaded, locked, locked with process waiting, private)

" sise of region in pages

- 31-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MmS
System Overview

* an r-list, which is a pointer to a list of pointers to PDTs and Disk Block Descriptors
(see below)

" number of page tables allocated to r-list

" if region is on the free list, pointers to the regions before and after on free list

" pointer to inode where blocks are

For each PDT, a Disk Block Descriptor table is allocated (contiguously). For each PDT entry there
is a corresponding Disk Block Descriptor table entry which contains information describing a copy of
the page on disk if one exists.

- 32-
Revision 10.4 overview.mnm (Revised 5/24/91)

Final Evaluatioun Report AT&T System V/MIS
System Ovrview

PROCESS TABLE

PROCESS
REGION TABLE

USE ARE

PRCS DAASRCUE

Fiur 6. Prcs DaaSrcue

I I3
Reiso 104oevoIu Rvsd52/1

Final Evaluation Report ATkT System V/MLS
System Overview

2.4.1.4 Process Creation and Execution

The only method of process creation available to the user is to invoke the fork system call. The
process that makes a fork call is referred to as the parent process, and the newly created process is
referred to as the child process. Every process has only one parent, but can have several children.
Immediately after execution of the fork call, the only differences between the parent process and
child process are the fact that the child process ID and the parent process ID's are distinct, the
PPIDs differ, and some accounting flags are re-initialized.

A successful fork system call causes the kernel to perform the following sequence of operations:

" allocates an entry in the process table for the child

" assigns a unique process ID to the child

" copies data (e.g. parent process real and effective user IDs, parent process IDs) from
the parent process table entry to the child's process table entry

" increments the file and inode table counters

• makes a logical copy of the parent's text, data, stack and user area

* returns the child's process ID to the parent

" returns 0 to child process

After the process has been created by the fork call, the ezec system call can be run to overlay the
memory space of the newly created process with a copy of an executable Mile. The kernel checks the
execute permissions for the executable file, and the size of the rile against the limits of the invoking
process. Next the kernel determines the layout of the executable file and overlays the text and data
regions. Upon invoking ezec, signals set to be caught by the invoking process are set to terminate
the transformed process. Finally, the process is placed on the run queue and awaits execution. The
ezec system call will fail if any of the following are true:

" the new process file is not an ordinary file

" the new process is a shared text file that is currently open for write by some process

* not enough memory

" a signal was caught during the ezec system call

" attempting to load a program whose size exceeds the system limit

" attempting to load a SGID file when no privilege for the combination of security
label and discretionary group exists within the system

2.4.1.5 Signaling

Processes may send other processes signals via the kill system call, or the kernel may send processes
signals by directly writing the signal into the p sig field of the process table entry. The following
chart identifies the signals supported on System V/MLS:

- 34-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

TYPE VALUE MZANING
SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03 quit
SIGILL 04 illegal instruction
SIGTRAP 05 trace trap
SIGIOT 06 currently used as an abort signal
SIGEMT 07 Alignment Error
SIGFPT 08 floating point exception
SIGKILL 09 kill
SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on pipe with no one to read
SIGALRM 14 alarm clock
SIGTERM 15 software termination
SIGUSRI 16 user defined signal 1
SIGUSR2 17 user defined signal 2
SIGCLD 18 death of child
SIGPWR 19 power failure

20 user defined signal 3
21 user defined signal 4

SIGPOLL 22 pollable event occurred

When a process sends a signal via the kill system call, the real or effective UID of the sending
process must be the same as the SAVED or effective UID of the receiving process; the only
exception is the case when the effective UID of the sending process is superuser (root). The
superuser can send a signal to any process.

A signal will not be sent if one or more of the following are true:

- the signal number is not valid

- the signal is a SIGKILL and the receiving process ID is 1

- the real or effective UID of the sending process is not superuser, or its real or effective
UID does not match the saved or effective UID of the receiving process

- no process can be found corresponding to the specified process ID

- the system's mandatory access control policy is violated and the effective UID of the
sending process is not superuser

The kernel sends a signal to a process by setting a bit in the signal field (p.sig) of the process table
entry which corresponds to the type of signal sent. If the process is sleeping at an interruptible
priority and receives a signal, the kernel awakens it.

Signals are not queued, so if a process receives the same signal more than once before processing the
previous occurrence, then those additional signals are ignored. If a process receives different signals
at the same time, then the one with the lower signal number is processed first.

- 35 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATT System V/MLS
System Overview

The TCB checks for signals before a process returns from kernel mode to user mode and when it
enters or leaves the sleep state. The process that receives the signals may react to them in one of
the following manners:

- by default the process calls ezit and terminates

- the process may ignore the signal (except for SIGKILL)

- the process may execute a particular user function

A process can only respond to a signal while in user mode; therefore signals do not have an
immediate effect on processes running in kernel mode. If a process is running in user mode and
receives a signal, the kernel will respond to the interrupt and then return to the user process.

2.4.1.6 Process Termination

The exit system call terminates the executing process. The kernel determines if the calling process is
a process group leader. If the process is a process group leader, all members of the group are sent a
SIGHUP signal, and their process group number is changed to sero.

Ezit then causes the kernel to do the following:

- disable the process's ability to handle signals

- close all open files associated with the process

- free memory associated with the process by deallocating the appropriate regions

- change the process state to *sombie". A zombie process is one that still has an entry in
the process table but doesn't have a user area associated with it. Init removes a zombie
process from the process table when its parent exits.

- save the accumulated kernel and user mode execution times of the process in the
process table

- change the parent of any remaining child processes to process I (the init process)

- sends a 'death of child' signal to the parent process so process I can remove it from
the process table.

- resume scheduler which chooses next process to run and performs a context switch

2.4.2 Objects

System V/MLS supports the following objects:
regular files
special files
directories
named pipes
unnamed pipes
shared memory segments
message queues
semaphores
processes

This report also discusses 630 MTG buffers which are system objects (as are the process table, u-
area, etc). 630 MTG buffers are emphasized due to their unique nature.

-36-
Revision 10.4 overviewum (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIA
System Overview

Of these objects, all are represented as part of the file system except for message queues,
semaphores, shared memory segments, processes, and the 630 MTG buffers. All of these objects are
named objects subject to the system's discretionary access policy except for unnamed pipes and 630
MTG buffers. The file system object access control information can be found in the inode for that
object. The non-file system objects each have storage data structures which contain their access
control information.

There are three basic access types allowed in System V/MLS:

READ - Any operation that results in a flow of information from an object to a subject.

WRITE - Any operation that results in a flow of information from a subject to an object or
that causes a change of state within an object.

EXECUTE - Execute access on a file allows the loading and running of the contents of that file
(object). Execute access on a directory allows a subject to search the directory for a
file name.

The following section provides a description of each of the object types. These descriptions include
usage, design, and implementation. There is some discussion of access policies and features,
although details can be found in the discretionary and mandatory access sections of this report (see
page 42, "Discretionary Access Control" and page 44, "Mandatory Access Control').

2.4.2.1 Regular Files

Regular files are the primary information containers for the system. Any data can be placed into a
file. Allowable access types for regular files are read, write, and execute.

2.4.2.2 Directorles

A directory is simply a file containing the names of those files which reside in it and their inode
numbers. It is possible for a directory to contain an upgraded file or directory. It should be noted
that files must be created in a directory at the level of the directory. This is a consequence of the
System V/MLS "write equal only" policy. Therefore, the only way for a directory to contain an
upgraded file, is for the rile's classification to be upgraded using the chpriv command. The upgraded
file name or directory name must be at the same label as the containing directory; thus making it
visible at the label of the containing directory. The attributes, other than file name and inode
number, are at the upgraded label and are therefore only visible at that upgraded, or higher label.
Some directories can be marked as SECURED, and are treated differently by the TCB (see page 55,
"SECURED Directories").

Under normal circumstances the TCB ensures that a directory's label dominates the label of its
parent directory. Thus, as one traverses a path from the root to a file system object, the labels are
monotonically non-decreasing. It is possible, however, for a trusted user to downgrade a file or
directory which could leave that part of the file system non-monotonically non-decreasing. This
happens when a file has been reclassified (via chpr i) such that the containing directory's label is
greater than the file's new label (see page 53, "Reclassifying Information'). Although the file has
been reclassified, it is still protected at the (higher) label of the containing directory. This is because
a process must be operating at the label of the containing directory in order to traverse the path to
the reclassified file and read it. However this process would not be able to write the rile. To restore
the normal file system hierarchy, the file would have to be moved via the mvpriv trusted process.
Mvpriv ensures that the invoker has discretionary search and write access to the containing directory
and the target directory and that the invoker is operating at the label of the containing directory.

- 37-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATMT System V/MLS
System Overview

Finally mvpriv ensures that the target directory's label is equal to the file's new label. Allowable
access types for directories are read, write, and execute.

2.4.2.3 Special Files

Special files are file system objects which are used to represent devices and can be manipulated by
user processes. For special files that represent single-level devices, the label of the special file as
recorded by the file system is used. Storage medium devices are multi-level devices; the 630 MTG
terminal is a multi-level device represented by multiple single-level pseudodevices. Access to multi-
level device files is restricted to trusted processes that enforce the labeling requirements.

User terminals, except for the 630 MTG, are single level devices that can operate at only one label
at a time. This range has a maximum security label and a minimum security label defined in a
device clearances database (the /mls/cleardev file). The maximum security label must dominate the
minimum security label. No device is ever allowed to operate outside the range of security labels
specified by its maximum and minimum security labels. Allowable access types on special files are
read and write; execute access does not have any effect on special files.

2.4.2.4 Named Pipes

Named nipes are file system objects used as communication buffers between two processes. Named
pipes provide an interprocess communication facility that manages data in a first-in, frst-out
manner. A process granted read access to a named pipe may extract the oldest information in the
named pipe. Extracting the information deletes it from the named pipe. A process graii.ed write
access to a named pipe can append information to the named pipe. Allowable access types for
named pipes are read and write; execute access does not have any effect on named pipes.

2.4.2.5 Unnamed Pipes

Unnamed pipes provide an interprocess communication facility like named pipes. Unnamed pipes do
not have names in the file system; however, they are represented in the file system with inodes.
Unnamed pipes can be used as communication buffers between a child process and its parent process
and between sibling processes. Since this communication can only occur if the pipe's file descriptor
is passed on to the child from the parent as part of the process context duplicated when the child is
forked, no other access control is enforced except in the case of executing a newpriv command. For
an explanation of the newprie command, see page 51, 'Changing Subject Sensitivity Label
Interactively'. Allowable access types for unnamed pipes are read and write; execute access does
not have any effect on unnamed pipes.

2.4.2.6 System V IPC Objects

There are three IPC mechanisms in System V/MLS known as System V IPC: messages, semaphores
and shared memory segments. Although each is intended for a specific use, they all share common
implementation properties. These properties are as follows:

- A kernel resident table exists, one per mechanism, which contains entries describing
all instances of the mechanism. For messages there is a system message table whose
entries describe all current IPC messages, for semaphores there is a system
semaphore table whose entries describe all instances of semaphores, and for shared
memory segments there is a system shared memory table whose entries describe all
instances of shared memory segments.

- 38 -
Revision 10.4 overview.m (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

- Each entry in one of the three system tables contains the following information:

- numeric key (user-chosen name)

- creator UID/GID (IDs from the creating process)

- owner UID/GID (IDs originally the same as those of the creator, but
may be changed by the creator or owner)

- set of permission bits for user, group, others (see page 42, "Discretionary
Access Control")

- status information (e.g., last process to update the entry, time of last
access, number of processes attached)

- Each type of mechanism is associated with a corresponding "get" system call to
create a new entry or retrieve an existing one (i.e., msget, semget, shmget). A
process supplies a user-chosen key to the call. The kernel searches the appropriate
system table to see if an entry exists for the given key. The table is searched on the
key field which is contained in each entry of the table. If no entry exists the kernel
allocates a new structure, initialises it, and returns an identifier (ID) to the user. If
an entry exists for the given key, the kernel checks permissions for the entry and if
access is allowed for the requesting process, the identifier for the entry is returned. A
creating process can be assured of obtaining an unused entry by specifying the key
"IPO PRIVATE" to the call.

- For each mechanism, the identifier returned from a "get" system call is based on the
index into the table for the data structure (index = identifier modulo (number of
entries in table)). When a process removes an entry, the kernel increments the
identifier associated with it by the number of entries in the table. Processes that
attempt to access the entry by its old identifier fail on their access.

- Each mechanism is associated with a corresponding set of "operation" system calls:
mqgend, rmgrcv for messages, semop for semaphores, shmat, shmdt for shared memory
segments. For all of these calls, a process must specify an appropriate identifier to
the call (i.e., the ID returned from the "get" system call). The kernel then checks
that the invoking process has appropriate access to the corresponding entry, (see
page 43, "DAC on System V IPC Objects"). Note that this prevents a process from
successfully gaining access to an entry by guessing at the entry ID.

- Each mechanism is associated with a corresponding "control" system call: msgcd,
semct/, shmctL These calls allow a process to query status information about an
entry, set status information, or remove an entry from the system. A process must
have read access to the entry to query status information. In order to set status
information or remove an entry, however, the process UID must match the creator
UID or the owner UID. Creator UID and GID fields can never be changed, so the
creating user always retains "control" access to the entry. Since the owner can
change permission bits, rw access to the entry can be taken away from the creator,
however, because the creator will still retain "control" access, he can always give
himself back rw access.

The following three sections describe each of the IPC objects.

-39-

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.2.6.1 Semaphores

Semaphores are objects that are used to implement a process synchronisation mechanism. System V
semaphores are a generalization of the P and V operations described by Dijkstra 6 in that several
operations can be done simultaneously, and increment and decrement operations can be by values
greater than one. System V semaphores can therefore take on any numeric value and be used to
control access to a resource (i.e., locking/unlocking) or to share a small value between processes.
Allowable access types for semaphores are read and write; execute access does not have any effect on
semaphores.

2.4.2.6.2 Message Queues

Message queues are containers for messages which are primarily used to hold requests to server
processes.

A process granted read access to a message queue may extract the oldest message from that message
queue. Extracting the message deletes it. A process granted write access to a message queue may
append messages to the message queue. Allowable access types for message queues are read and
write; execute access does not have any effect on message queues.

2.4.2.6.3 Shared Memory Segments

Shared memory segments are used to allow multiple processes to access the same information
without the overhead of multiple copies. A description of how shared memory is implemented can
be found on page 25, 'Memory Allocation'. Shared memory provides the fastest means of
exchanging data between two processes. Allowable access types for shared memory segments are
read and write; execute access does not have any effect on shared memory segments.

2.4.2.7 Processes

Although processes are the subjects in the System V/MLS system, when they are viewed as the
recipient of a signal they must be treated as objects. Processes are represented by entries in the
process table.

When a program overlays a process via ezec, the saved UID is set equal to the effective UID; the
real UID remains as it was. This way, a process can move back and forth between the saved UID
and real UID. However, if the effective UID of a process is 0 (i.e., superuser), invoking the setuid
system call will set all three UIDs to the new value. Therefore a process cannot reclaim root
permissions once it has given them up.

In order for a process to be allowed to send a signal to another process, the real or effective UID of
the sending process must match the saved or effective UID of the receiving process, unless the
effective UID of the sending process is superuser. Also, the classification level of the sending process
must match the classification level of the receiving process, unless the effective UID of the sending
process is superuser. For more details on signals, see page 34, 'Signaling'.

5. Dijkstra, E.W., 'Cooperating Sequential Processes',
in *Programming Longuagee,
ed. F. Gennys, Academic Press, New York, NY, 1968.

- 40-

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT T System V/NLS
System Overview

2.4.2.8 630 MTG Window Buffers

The window buffers on the 630 MTG are associated with the process that is currently running on
the terminal. These storage objects are discussed further in the section or page 71, 'The 630 MTG
Terminal Implementation'.

2.4.3 TCB Protection Mechanimns

The System V/MLS TCB protects itself and users' data through the use of hardware and software
protection mechanisms. The following sections discuss these protection mechanisms.

2.4.3.1 Hardware Protection Mechanisms

System V/MLS utilizes the system hardware architecture to provide for a trusted computing
environment. Hardware elements that are essential in providing this environment include privileged
execution modes and the virtual system environment provided to users. These two concepts, along
with the special controls afforded to the 630 MTG terminal provide a protected user environment.

2.4.3.1.1 Hardware Protection

The System V/MLS hardware is based upon the WE 32100 Central Processing Unit, in conjunction
with the WE 32101 Memory Management Unit. This combination provides an environment for
users which enforces restrictions on the ability of users to access data. The data access restrictions
are provided by three mechanisms: access determined by processor execution mode, controlled access
within a given execution mode, and kernel privileged instructions.

The first control mechanism involves the association of access permissions with physical memory
segments. For every physical segment, four access fields are specified, one for kernel, executive,
supervisor, and user execution modes. These access fields are checked when access is requested to a
segment. If the processor is in kernel mode when it requests access, the access decision is based
upon the kernel permission field. When executing in user mode, the user permission field is used.
The specifiable permissions to a physical page are; read/write/execute (RWE), read/execute (RE),
execute only (EO), and no access (NA).

The second control mechanism involves the protection of data batween users at the same execution
mode. The system provides a virtual-to-physical translation mechanism, which isolates the data
accessible to users. The translation tables needed for this mechanism are controlled by the TCB,
and protected from unauthorised modification. This protection involves placing the tables into
memory that is only accessible while the processor is in kernel mode, and restricting the ability to
enter kernel mode. This ensures that only the TCB will be capable of modifying the tables which
define the virtual system environment. See page 25, *Memory Allocation', for a detailed discussion
of the translation mechanism.

The third control mechanism consists of the set of kernel privileged instrLctlons. These kernel
privileged instructions, which may manipulate machine resources (e.g., physical memory, hardware
interrupts), are restricted to processes operating in kernel mode. Since only the TOB operates in
kernel mode, non-privileged users are prevented from using these instructions. For more information
on kernel privileged instructions, see page 5, 'Instruction Set'.

2.4.3.2 Software Protection Mechansm.

As discussed previously (see page 24, 'TOB Boundary'), the software portion of the TCB is
composed of those routines running in kernel space and trusted processes. The TCB is capable of
protecting the TCB routines and data files from unauthorized modification through the routine

- 41-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Riport AT&T System V/MLS
System Overview

enforcement of the mandatory and discretionary access control policy.

2.4.3.3 Discretionary Access Control

Discretionary Access Control (DAC) allows owners of objects to grant or deny access to the named
objects which they own based upon user-defimed information sharing requirements. System V/MLS
named objects are identified on page 36, *Objects". DAC in System V/MLS is provided through
protection bits. Protection bits are associated with all System V/MLS named objects except
processes. Access mediation procedures described below refer to discretionary access control only.
Of course mandatory access control decisions always override discretionary access control decisions.

2.4.3.3.1 DAC on ilesystem Objects

The protection bi s on filesystem objects are used to set access for an owner, a group, or all others.
The creator of an object is the owner and at object creation, each object is marked with the owner's
UID and GID. After object creation, however, the creator may transfer ownership to another user or
group by using the chown, chgrp or chprie commands, or the chown system call. The previous
owner then loses all ownership access rights. A file's security label cannot be changed if the file is
being held open by another process and the user's RUID is not root.

Once a subject has been granted access to an object, the subject retains the access until t. e subject
destroys or releases the object. This is true if the object's owner changes the permissions such that
the subject should no longer be capable of accessing the object, or even if the owner attempts to
delete the object, any subject which has the object open will retain access. The only exception to
this occurs with the character special rile /dev/tty (i.e. a user terminal). /dev/tty has access checks
performed with each read or write call; thus, an access permission change to the actual terminal
associated with /dev/tty will be reflected with the next access attempt.

Each object is also associated with a specific 'privilege', which is System V/MLS terminology for a
tuple consisting of an instantiation of a discretionary access control group at a given mandatory
access control label. The 'discretionary group' associated with the object corresponds to the
traditional UNIX group mechanism. All members of the discretionary group have discretionary
access permission to the object based upon the setting of the group field of the protection bits. Any
named object inherits its privilege, and thus its discretionary group, from the process which created
it; however, the discretionary group of a named object may be changed via the chgrp or chpriv
commands (these commands must be executed by the owner of the object). There is no limit to the
number of groups to which a user may belong; however, a user may only operate with one group's
identifier in effect. Thus, a user may not have discretionary access to a file in group A while the
user is operating as a user in group B. To obtain access to the group A file, the user may change
the operating discretionary group of his or her process, and thus obtain discretionary access rights to
the object, by using the newgrp or newpriv commands. In System V/MLS a group can be created
by any user; however, groups with special access rights are created and owned by the system
administzator. For a complete description of these special groups see page 51, 'Special User
Authorizations on System V/MLS'.

Access granted to 'other' permits all other users of the system discretionary access to the object.

Each file is represented in the system by an inode, which contains the owner and group ID of the
rile. The owner's UID and the group's GID are recorded in the inode at file creation. Also in the
inode are eleven security relevant bits associated with the file; nine for the three sets of access
control, and one each for the SUID and SGID bits. For a description of SUID and SGID see page
44, "Setuid/Setgid Mechanisms'.

- 42 -
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/ LS
System Overview

Discretionary access to a file-system object is checked in the following manner:

Before making any other check, the kernel ascertains whether the effective UID of the process
requesting the access is zero (the superuser). If so, then access is granted immediately.

1. The effective user ID (EUID) of the process is checked against the owner ID of the file. If the
EUID matches the owner ID of the file, access permission is checked for the owner. If the
requested permission bit for the owner has been set, access is granted. Otherwise access is
denied. If the EUID did not match, the check continues.

2. If access has not been determined, the effective discretionary group ID of the process is
checked against the discretionary group ID of the object. If the Effective Group ID (EGID)
matches the discretionary group ID of the object, access permission is checked for the group.
If the requested permission bit for the group has been set, access is granted. Otherwise access
is denied. If the EGID did not match, the check continues.

3. If access has not already been determined, the 'other" bits are checked. If the requested
permission for 'other' has been set, access is granted. Otherwise access is denied.

A user may alter the discretionary access control attributes of a file by using the chmod command or
system call. This command allows the owner of a file to change the protection bits on that file. The
umask command specifies the default protection bit settings when a file is created. Any bits set to
*1" in the umask will be cleared in that file's protection bits upon file creation (i.e. the protection
bits on the newly created file will be the negation of the umask setting). The default umask for the
system is --xrwxrwx (177). This results in initial access of rw- (600), meaning that only the
owner has access to the object and all other users have no access.

2.4.3.3.2 DAC on System V IPC Objects

Protection bits for user, group, and other are also associated with an IPC object, whether it be a
message, semaphore, or shared memory segment. These permission bits are stored in the IPC
object's associated system table entry as described on page 38, 'System V IPC Objects'. The SUID
and SGID bits are not meaningful for IPC objects, as IPC objects are not executable. An IPC
object has both a creator and an owner associated with it, and at object creation, the creator and
the owner of the IPC object are the same. The creator (or the owner) may change the owner UID,
owner GID, and the permission bits associated with the object through the IPC "control' system
call (i.e., msgc, semct, or shmct. The creator UID and GID can never be changed and therefore
the creator always retains "control* access to the object.

Since each IPC object has associated with it both a creator UID and GID, and an owner UID and
GID, there is an additional check made when determining discretionary access. Access to an IPC
object is checked in the following manner:

If the effective UID, EUID, of the process is root, access is granted.

1. The EUID of the process is checked against tie creator UID and the owner UID of the object.
If either matches, and the requested permission bit for the creator or owner has been set,
access is granted. Otherwise access is denied. If the EUID did not match, the checK
continues.

2. The EGID of the process is checked against the creator GID and the owner GID of the object.
If either matches, and the requested permission for the group has been set, access is granted.

- 43 -

Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Otherwise access is denied. If the EGID did not match, the check continues.

3. If access has not yet been determined, the 'other' bits are checked. If the requested
permission for other has been set, access is granted. Otherwise access is denied.

As mentioned previously, the creator or owner of an IPC object can change the owner GID. The
owner GID, however, can only be changed to a privilege at the same sensitivity level as the original
owner GID. If a process attempts to change the owner CID to that of a privilege at a different
level, the resulting CID will be the discretionary group of the requested CID and the current level of
the IPC object. A check is made to ensure that such a resulting privilege exists on the system.
MAC checks for IPC objects are only performed against the owner GID.

2.4.3.3.3 Setuld/Setgid Mechanilss

The high order two protection bits of a file are the set-user-ID (SUID) and the set-group-ID (SGID)
bits. These bits have no meaning unless the file is an executable program. When the SUID bit has
been turned on (via the chmod command or system call) and the program is later executed, the
effective UID is copied to the saved UID as in a normal exec, and the UID of the executed program
becomes the effective UID of the resulting process. When the SGID bit has been turned on and the
program is later executed, the resulting process is given a CID which reflects the sensitivity level of
the invoking process and the discretionary group of the program, provided that the resulting
privilege is defined on the system. The process now has all the discretionary access rights of the
owner of the program (and/or the owner's group) but the actions of the process are controlled by
the program. The process can change its effective UID to either the "real" UID (the UID of the
user who invoked the process) or the "saved' UID (the UID of the owner of the setuid program),
resulting in the process having the sum of both users' discretionary access rights. If the effective
UID is 0 (superuser), changing the effective UID is irreversible since the EUID, RUID, and saved
UID all get changed to the UID of the program.

System V/MLS provides protection against some misuses of the SUID mechanism. If the ownership
of a file is changed, the SUID/SGID bits are cleared. Also, if the file's group is changed, the
SUID/SGID bits are cleared. If a file is modified by any user other than the owner, the
SUID/SGID bits are cleared. Upon execution of a SGID file, the ezec system call sets the effective
OID to a OID that preserves the security label associated with the subject. SUID attacks against
superuser are more difficult because no process can execute with superuser privilege unless the
executed code has been labeled at SYSTEM level. Untrusted users are never cleared to SYSTEM
level and hence cannot create a file executable by superuser. The System V/MLS /bin/sh does not
allow SUID/SGID privileges to be inherited by processes spawned from SUID/SGID processes via
shell commands.

It is still possible, however, for the DAC policy to be violated if users fail to write well-behaved
SUID/SGID programs. System V/MLS addresses this problem by providing a configurable option to
deny the setting of the SUID and SGID bits on files by anyone other than superuser. This allows
the administrator to inspect any candidate SUID/SGID programs proposed by users or hidden in
applications before they are installed.

2.4.3.4 Mandatory Access Control

Mandatory security is enforced by System V/MLS over all subjects and objects. Subjects and
objects are labeled as described on page 45, "Labels on System V/MLS', and these labels are used
to enforce the mandatory security policy. Labels are assigned and maintained by the TCB, and may
only be modified through trusted software.

- 44 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/14LS
System Overview

The mandatory security policy enforced by System V/MLS relies upon two basic relationships
between labels. These relationships are:

Dominance: When label X dominates label Y, the hierarchical portion of label X is
greater than or equal to the hierarchical portion of label Y, and label X
contains at least all of the non-hierarchical categories that are contained in
label Y. This check is performed within the kernel by the routine
mLs don.

Equivalence: When label X is equivalent to label Y, the hierarchical portion of label X is
identical to the hierarchical portion of label Y, and the set of non-
hierarchical categories contained in label X is identical to the set of non-
hierarchical categories contained in label Y. This check is performed
within the kernel by the routine mls-equ.

System V/MLS supports three basic access modes to objects: read, write, and execute. The
mandatory security policy supported by System V/MLS controls the basic access modes such that
data is not compromised to unauthorized users in accordance with the following controls:

To grant a subject read access, the label of the subject must dominate the label of the object.

To grant a subject write access, the label of the subject must be identical to the label of the object.

To grant a subject execute access, the label of the subject must dominate the label of the file
object.

2.4.3.4.1 Labels on System V/MLS

System V/MLS uses the UNIX group ID (GID) to implement its labeling scheme. GIDs are
associated with each subject through the process table and with each object as part of the inode or
IPC data structure. When an object is created, its label is that of the creating process. A child
process inherits the label of its parent process. At login, the process receives a default label
according to what is specified in the /mis/passwd file For a complete description of how this works,
see page 59, 'User Identification and Authentication".

Every label has two parts; a hierarchical level and a set of non-hierarchical categories. The
hierarchical level is represented by a number from 0 to 255. All levels are defined by the system
administrator except for level 0. Level 0 is the lowest level on the system and is a special level
reserved for system use. It is given the name "SYSTEM". A label may contain from 0 to 1024
categories. Relationships between labels are described elsewhere in this report (see page 89,
'Mandatory Access Control').

2.4.3.4.2 Privileges

System V/MLS also incorporates a unique concept referred to as a 'privilege". A privilege is the
name given to the combination of a group and a level and is used as an easy way to move between
level/group combinations. A privilege can be thought of as an instance of a group at a given level.
It is possible to have separate privileges which are instantiations of a group at different levels, and
each group, when instantiated at a given level, is represented as a distinct privilege. Take, for
example, a discretionary group 'projA' that may operate at several mandatory levels. There would
be one privilege made for each level the group projA may operate with. The creation of privileges is
constrained by the clearance of the user creating the privilege as well as by the set of levels currently
defined on the system. Privileges are then used for both mandatory access decisions and

-45-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MLS
System Overview

discretionary group access decisions.

Each privilege has a set of members that may operate with that privilege. The creator of a privilege
is the owner of that privilege. Only the owner may add users to the privilege; that can be done
with the addgrp or addprie command. addgrp will add a member to all privileges defined with that
group provided the user to be added has the required clearance. addpri will add a member to a
particular privilege if the member is authorized for the label associated with the privilege (see page
66, 'addgrp and addpriv trusted processes" for a more complete description of these commands).

When a subject creates an object, the current operating privilege of the subject is assigned to the
object. Users may change the privilege associated with their files using the chpriv command.
Changing the label associated with a file to a level that is not dominated by the original is a
downgrade. Reclassification policy determines who, exactly, has the capability to downgrade a
specific file under given circumstances. The five possible reclassification policies are described in
section 7.5 of the Trusted Facility Manual for System V/MLS and range from users operating as
root to members of a special discretionary group named secadm (see page 53, 'Reclassifying
Information') to all users of the system.

When invoking SGID files, the process inherits its security label from the user executing the
program and its discretionary group from the file. In other words, the invocation of the SGID
program can not change the current operating level of the process. A check is then made to make
sure that the resulting privilege is defined in the system.

The GID associated with System V/MLS objects is 16 bits long and is used to indirectly reference a
privilege. Privileges are stored in the /tis/labels file as machine dependent data structures that are
immediately usable by the kernel without format conversions. Machine dependent representations
are converted into machine independent canonical form whenever they are used outside the kernel.
In the canonical form of a security label, level and categories are represented by numbers. These
numbers are expanded as per the /mls/levels and /mls/categories files before being displayed in
human readable form. For all terminals the /mls/cleardev file allows the storage of additional
information such as device maximum and minimum labels. These device maximum and minimum
labels can then be used to restrict the allowable levels of information to be stored on or retrieved
from the device.

The integer value assigned to a newly created privilege is determined by incrementing the current
maximum privilege value by one. When the system capacity (60,000) has been used the system
administrator is notified and determines the appropriate action to follow. Possible choices include
the failure to add the new privilege, reuse a previously defined (but no longer in use) privilege, or
'retire' a currently active privilege and then utilize the retired privilege number. As recommended
in the TFM, the reuse of a previously defined GID should occur no sooner than one year after the
privilege was retired. This waiting period minimizes the potential for the GID to still exist on the
system, or for the GID to exist on a system backup that might potentially be reloaded onto the
system. If, in fact, a file with a GID of a removed privilege is loaded into the system and the same
GID has been used for a new privilege, the file will be associated with the new privilege. This is the
reason that it is important to have a long waiting period before a privilege GID is reused, and why
the system administrator must be cautious when restoring files from backup tapes.

The /mls/liabels file is most often accessed with the GID as a search key. The kernel uses the
subject's and object's GIDs to index into the /ms/labels file and find the associated security labels
when checking MAC access and to find the associated discretionary group ID (DGID) when
checking DAC access. Similarly, when information is displayed in a human-readable form (e.g.

- 46 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MAS
System Overview

printed output), the TCB translates the internal privilege information into a mandatory security
label, which is output with the data.

The /mds/labels file is a regular file containing data structures that map privileges to labels. Each
privilege in the file contains a discretionary group plus the privilege's security label. The
/rnls/labels file is accessible by the kernel or a trusted process which is SUID to root. New privileges
are always added to the end of the /nls/labeis file and a check is made to ensure there is not an
already existing privilege with the same GID.

The following is a description of the format and fields of the /mls/labels and /mds/ group files. The
description of the Indis/labels file is a logical description only; internally it is stored on disk in a
binary format.

/mIs/labeLs: <GID>:<DGID>:<LABEL>:<LABEL NAME>:<RESERVED>

GID: Privilege ID

DGID: Discretionary Group ID

Security Label: a hierarchical level and list of non-hierarchical categories

Security Label Name: machine generated unique name for label used to name the
subdirectory of a SECURED directory associated with this label

Reserved: reserved for other attributes; network labels, ACLS

/mls/group: <NAME>:<INFO>:<GID>:<MEMBERS>

NAME: This is the name by which the privilege is known. This is the
name used with newpriv or newgrp commands to designate a
privilege or group.

INFO: This field is used to contain various special key words used as flags
or indicators.

GID: This is the privilege ID.

MEMBERS: This is a comma separated list of login names of users who are
authorized to use this privilege/group. The first name in this list
of privilege members is the owner of the privilege.

The GID and DGID are unsigned short integers in the range 0 through 60000. It is important to
note that the GID and DGID identifiers share the same name/number space represented by entries
in the /mls/group file. When the mkgrp command is executed, a GID is assigned for each DGID by
adding a /ml/labels file entry with GID = DGID and the label set to SYSTEM. When a new
privilege is created with the mkpriv command, entries are made in both the /mls/labels file and the
/mls/group file. The new privilege receives a new, unique GID, and its DGID is the same as that of
the underlying group.

The /mls/labels file contains entries for all privileges in use on the system. It is a binary data file
organized so entries can be quickly located by kernel routines using the GID as an index. The
/ms/labels ile contains a hash table of fixed size. Slots are pointed to by a hash of the privilege's
GID. Collisions in the hash table are resolved by chaining (i.e., the entry occupying the slot in the
hash table points to the next entry outside the hash table whose GID hashes to the same hash

- 47 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/NLS
System Overview

index). Also, all Imle/labels entries with the same discretionary access control group (DGID) are
chained together. For a pictorial description of how the entries of the /mis/ilabel file are linked
together see Figure 6.

The privilege data portion of each /mls/labels entry is a structure with the following fields: GID,
DGID, hidden subdirectory name for this privilege, hierarchical level of the privilege, the number of
significant category words, and 32 category words. Privileges will usually require many fewer than
32 32-bit words to represent their category set. Therefore, indicating the number of category words
that are significant greatly reduces the processing time when working with categories. For a
pictorial description of the fields of the privilege data portion of the /mls/ilabels entries, see Figure 7.

-48-
Revision 10.4 overview.mm (Revised 5/24/91)

'77;

Finial Evaluation Report AT&T System V/NIB
System Overview

Labels File Structure

Privilege Data

0
0 50 Entry

d-hash 0 Hash Table
0
0

0
0
0
0
0

0
0
0
0
0

0

d-hash - points to next entry which
hashes to same slot

ddgrp - points to the next entry which
has the same gid

Figure . Labels File Structure

-e49-
Revision 10.4 ovemvew.mni (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Prvilege Data Structure

gid

dgid

Drtory

0
0
0
0
0
0

Name

Level

Si kant Category Words

Category Word 3

0
0
0
0
0
0
0

Category Word 3

Figur 7. Privilege Data Structure

-50-
Revision 10.4 overview.rmn (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.4.3.4.3 Changing Subject Sensitivity Label Interactively

System V/MLS incorporates the ability for any user to alter the mandatory access control level and
discretionary group associated with their session. This mechanism is invoked via the neupri
command, and may only be used to change to a MAC level which dominates the previous level. A
user executes a newprie command, specifying the desired privilege as an argument. The user must
be a member of the selected privilege. The System V/MLS TCB then compares this privilege with
the session's clearances stored in the /lr/sesuion8 database. Should any of these checks fail, the
newpriv command fails and returns an error message and the user remains at the current privilege.
If these checks succeed, then newpriv creates a new child process and invokes a new shell for the
user at the new level. Additionally, upon execution of the newpriv command, all file descriptors of
the parent process are checked to ensure that no violation of the system security policy can occur.
If the new level dominates the current level, all the file descriptors are closed. The user may then
operate at the new level for as long as is desired, and terminate that session by exiting from the
shell. This will release the new shell only, and the user will revert to the shell in which he or she was
operating before issuing the newpriv command. This ensures that no information may be passed in
violation of the System V/MLS security policy.

2.4.3.5 Special User Authorizations on System V/ILS

System V/MLS makes use of a number of different discretionary access control groups, as well as
specially defined mandatory access control labels, in order to maintain control over different
elements of the TCB. Each of these, as well as the role it plays in the overall security of the system,
is discussed below.

2.4.3.5.1 Operational Roles

In System V/MLS there are three roles associated with performing administrative duties on the
system: Operator, System Administrator, and Security Administrator. A user associated with one
or more of these roles is known as a system officer. The duties involved in these roles are peiformed
with superuser (i.e., root) permission. System V/MLS relies on additional security measures to
ensure that only authorized personnel are permitted to operate as system officers. It should be
noted that these roles can only be enforced procedurally. The system does not enforce any kind of
separation or least privilege amongst roles.

The operator's duties deal primarily with the mechanics of running a computer system. They
include the following:

- system start-up/shutdown

- mounting, unmounting, and storage of labeled data

- backing up and restoring files

- distribution of labeled hardcopy

- ensuring object reuse requirements on removable media

The system administrator's duties deal primarily with configuring the system, and detecting and
correcting abnormal conditions. They include the following:

- setting the system time/date

- 51 -
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATT System V/NLS
System Overview

- managing user accounts

- installing/removing application software

- maintaining correct permissions

- granting special authorizations

The security administrator's duties deal with maintaining the security of the system. They include
the following:

- administering clearance information

- printing, creating and editing the /mb/leveb and /mls/categories files

- maintaining device clearances

- setting up secured directories

- reclassifying information

- importing and exporting information

- chaiging default protection

- configuring audit trail channels

- reviewing audit trail data

- assuring the integrity of the TCB

- installing System V/MLS

- uninstalling System V/MLS

In order to provide a more secure environment for the system officers, System V/MLS incorporates
the following changes to the standard superuser environment:

- No one may login with the user-rD of root. System officers must first login as
themselves and then su to root. In this way, all auditable actions performed by root
can be traced back to the individual user.

- The ability to su to root may only be executed on devices that have a clearance at the
SYSTEM level. This allows the capability to restrict system administrative actions to
terminal devices that can be physically protected.

- System V/MLS is delivered with a specified default search path for program execution
by system officers.

- System V/MLS contains a security enhanced version of the Bourne shell for use by the
system officers.

- System officers, while operating as root, can not execute any program unless that
program is labeled at the SYSTEM label (i.e. only trusted programs).

- 52 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.4.3.5.2 System Software Integrity

In order to help preserve the integrity of the system software, System V/MLS incorporates a simple
integrity mechanism: use of the mandatory access control policy to assure that untrusted processes
cannot write to TCB code and data. All system software (the kernel, trusted processes, and any
other software which the site chooses to protect) is given the mandatory access control label
"SYSTEM'. SYSTEM is defined to be MAC hierarchical level zero and is one hierarchical level
below the lowest mandatory level which is accessible by nonprivileged users. When a new user is
added to the system, the user is given a minimum and maximum hierarchical level at which he or
she can log on. In order to modify a SYSTEM level object, th user must either be running a
trusted process which has root authorizations, or be logged in at the SYSTEM level. It is intended
that only a very few terminals and a few trusted users on any System V/MLS system will be given a
minimum clearance level of SYSTEM. This prevents modification of TCB files by a mandatory
mechanism. Most files which contain executable TCB code are owned by the discretionary group
bin. Most files which contain non-executable TCB files are owned by the discretionary group sys.
Membership in these groups is restricted to trusted users.

System V/MLS defines a system high mandatory access control label in addition to the system low
label, SYSTEM, described above. This label, called SYSHI, is defined as the highest hierarchical
mandatory access control level, with the complete set of non-hierarchical categories defined for the
site. SYSHI is initialized when the system switches from single to multi-user mode, and remains
constant while the system is in multi-user mode. It is for this reason that new categories and levels
should only be added to the system when it is in single-user mode.

One special group exists directly in support of a system service: mail. This group is used for
discretionary access control purposes, in order to allow several trusted processes which may execute
with that group ID to share resources while making those resources inaccessible to untrusted users.
The specific applications of this group can be found on page 65, "/bin/mail".

2.4.3.6 Reclassifying Information

System V/MLS allows users to change the privilege associated with files and named pipes, provided
that the change is to a privilege which is currently defined on the system and for which the user is
cleared. During the reclassification process a file can be upgraded, downgraded, or the label may
stay the same, in which case the new privilege has a different discretionary group, but the same
hierarchical level and set of non-hierarchical categories. When a file is upgraded, the new label
dominates the old label, and when a file is downgraded, the new label does not dominate the old
label. System V/MLS allows designated users, i.e. user who are allowed to downgrade, to reclassify
to privileges with noncomparable labels.

System V/MLS supports five different reclassification policies. They are listed below in order from
most restrictive to least restrictive:

1. System administrators are the only users allowed to reclassify objects either upward or
downward.

2. System administrators and members of the secadm group are the only users allowed to
reclassify objects either upward or downward.

3. System administrators are the only users allowed to reclassify objects either upward or
downward, and all users can reclassify objects upward.

- 53 -
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

4. System administrators and members of the secadm group are the only users allowed to
reclassify objects either upward or downward, and all users can reclassify objects upward.

5. System administrators and all users are allowed to reclassify objects either upward or
downward.

System V/MLS is delivered to the customer with the third policy in effect. It is up to the site
manager or accrediting authority to determine whether a more or less restrictive policy is
appropriate for their site/application, taking into account the risks and benefits of the alternate
policy.

System administrators, when operating with root capability, may reclassify any rile on the system
from any privilege to any other privilege provided the new privilege is defined on the system. All
other users, members of the secadm group included, are subject to the following restrictions when
they reclassify information:

1. They must own the object being reclassified.

2. The object being reclassified must be dominated by the label of th. currently operating
process.

3. They can not affect the classification of objects that are above their maximn.m clearance.

4. They can only do object reclassification on objects that are within their operating classification
range.

The reclassification of objects is accomplished by using the chpriv command. One can specify the
privilege name or the label and discretionary group which make up the privilege. For the
reclassification to be successful, the restrictions described above must be satisfied. If ordinary users
are not given the reclassification capability on a given system and a secadm group exists on the
system, the user requesting reclassification must invoke the chown command to give ownership of
the object to a member of the secadm group to do the reclassification. Once the reclassification is
accomplished, the secadm member must return ownership to the original user. Chpriv requires
confirmation of the operation if any user downgrades a file, or if the user, while operating at a higher
level than the file, changes either the label or the discretionary group of the file. It should be noted
that a file's security label can not be changed if the file is being held open by another process and
the user's real UID is not root. Also, only root may change the label of a character special device.

After a file has been reclassified to a lower classification, users at that lower classification will still
not be able to access the file if it resides in a directory at a higher level. Therefore, to complete the
reclassification process, the file will have to be moved to an existing directory that has a
classification the same as the newly reclassified file. This can be done using the mvpriv command.
The usual ml command does not allow this operation because of the System V/MLS MAC policy of
"write equal only". For the mvpriv command to succeed:

1. the user must have discretionary search and write access to the directory containing the file
and the target directory,

2. the user must be operating at a label which dominates the labels of both the source and target
directories, and

3. the file's classification must be identical to that of the target directory.

mvpriv requires confirmation for each rile moved.

- 54-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/NLS
System Overview

After a rile has been upgraded to a higher classification, it still resides in the lower level directory.
Although the user, while operating at the file's new classification, would have access to i" in the
lower level directory, it is good practice to keep files of one classification together in a directory of
the same classification. Also, while the file is in the lower level directory, it can be deleted by the
owner while he or she is operating at the directory's lower level but not when operating at the file's
higher level. This situation exists because of the System V/MLS 'write equal only' security policy
and the fact that creating and deleting files involves writes to the containing directory. In order to
move the file to a directory at the same level as the reclassified file, the mvpriv command is used. In
order for the mvpriv command to be successful, the three conditions described above must hold true.

2.4.3.7 SECURED Directories

System V/MLS provides a mechanism to alleviate the problem of multi-level directory structures.
The problem is this: certain directoriei (notably /dev and /tmp) must be accessed by all users of
the system, whose authorizations run from system low to system high. This access by all users can
result in violations of the system's security policy. The developers of System V/MLS refined a
mechanism which effectively solves this problem. This mechanism designates a group id at the time
System V/MLS is installed (by default, GID number 99) and designates that group as SECURED.
From then on, any directory which has that GID is treated specially by the TCB. The mechanics
are as follows:

Within a SECURED directory are some number of subdirectories. When a user logs in at a given
security label, login will create subdirectories at that label in the SECURED directories listed in the
file, /ms/MldFiles. This file contains by default the following directories: /dev, /imp, /usr/tmp,
and /usr/preserve.

The same process occurs whenever a user issues a newpriv command to change current operating
label. These subdirectories are created in anticipation that they will be needed, although they may
not actually be used. Mail subdirectories, on the other hand, are created by the explicit actions of
the system administrator using the MailSetup command. Thertfore, the system administrator
determines at which security labels mail can be received on the system. It is the subdirectories of
SECURED directories that contain the files to which non-privileged users have access. When a
non-privileged user references a file which apparently resides either in a SECURED directory or in a
directory beneath a SECURED directory, the user is never aware that the SECURED directory
mechanism is controlling the traversal of the path -nd einsuring that he or she is given access only to
the directory at the correct MAC label. To any non-privileged user, a SECURED directory is
entirely transparent. Namei is the System V routine that has been modified to recovi.ze SECURED
directories and skip over them if the effective user ID of the current process L not root or the
current GID is not 'SECURED'. Since all references to riles either go through namei, or are made
after access checks have been made through name; there is no way for the ordinary user to
circumvent this mechanism.

SECURED directories may only be created by, and are only visible to, the superuser and users
operating in the group 'SECURED'. As an example of how the mechanism operates, consider the
directory /imp. A user operating at Level 1 attempts to create a file called foo in /tmp, which has
been marked as a SECURED directory. The TCB recognizes /tmp as a SECURED directory, and
creates the user's file in subdirectory L1.3, instead. Similarly, a user operating at Level 5 who
attempts to create a file called foo in /tmp may have it placed in L5.2. The actual paths to the files
would be /tmp/Ll.3/foo and /tmp/L5.2/foo. Each of these files would be invisible to the other
user because of the difference in their MAC levels, and neither would note any difference in the

- 55 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

operation of the filesystem.

System V/MLS is shipped with five SECURED directories. They are /dev, /tmp, /usr/tmp,
/usr/preserve and /usr/maiL The application of each of these SECURED directories is explained
below.

/dev in the directory containing all of the device special files. Because the UNIX operating system
represents physical 1/O devices as just another instantiation of files, this is a convenient method of
organizing all devices for easy handling and access control. The System V/MLS approach to
handling devices is to populate the /dev directory itseif with device special files, and create links
from the appropriate SECURED subdirectory to the device special file as needed. The contents of
/dev are therefore SECURED subdirectories for each mandatory access control label in use and
device special files for each device on the system. Because they exist in the actual /dev directory,
which is marked as SECURED, they are unreachable by processes not executing with a real or
effective UID of root (or operating with the SECURED group).

/tmp and /usr/tmp are merely temporary storage directories, to which all users of the system are
expected to have access. System V/MLS assures that no information will be disclosed across
mandatory access control labels by its use of SECURED directories in these locations.

/usr/preserve is the directory which contains the saved images of text editing sessions that were
interrupted either by system crash or hang up.

/usr/ maii is an employment of the SECURED directory mechanism to provide an easy way to
implement a multi-label secure mail system. The system administrator may define the labels at
which he or she wishes to support mail. This is explained in greater detail below (see page 65,
"/bin/mail').

2.4.3.8 Subject/Object Access Decision Process

When a subject attempts to 'open' an object for later read/write/execute access, it must pass both
mandatory and discretionary access checks. The access check occurs as follows:

The user program executes an open system call. The open system call invokes the namei kernel
routine, which determines the location of the requested object. Open then calls the s5access kernel
routine for each directory in the pathname as well as the requested object. If search access is denied
to any directory in the path, processing terminates and an error is returned". S5access invokes
mis access to determine if the subject is allowed mandatory access to the requested object.
MIs_access utilizes the routines mis_dom and mis-eqt Lo determine if mandatory access should be
granted. If mis_access grants mandatory access to the object, s5access continues processing to
determine if discretionary access is permitted. Upon completion of the mandatory and discretionary
access checks, s5access returns to open, which generates an audit record of the event (if applicable),
and then returns to the user, indicating whether permission was granted or denied.

This basic procedure is followed for most ac-esses to objects with the following exceptions:

6. It should be noted that successful directory accesses are not audited when these accesses are private to the TCB and are
uecessary only to compute access to the resultant file for the user.

- 56 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

-ipc access is granted via the routine ipcaccess, which which invokes mis -dom and mds equ.
Control information for ipc objects is changed via the routines IPOSET and IPC_RMID.

-changing the inode of a file (e.g. changing owner or file status information) can occur via either
the mIs_chown or the mis_rchmod routine. Both routines call mWsequ to determine if the security
label of the subject is equal to that of the object being changed.

-a subject (process) is considered an object when it receives a signal from another subject. Signals
are sent via the kill system call, which utilizes m/s_kill to enforce restrictions upon which subjects
may signal other subjects, and in turn utilizes m/s-equ to determine that an equal label
relationship between the subjects exists.

-for all terminal devices, access controls are enforced when the file is opened and for each
read/write call to the device. The open is checked as previously described, while the read/write
access checks occur within mis_ttyrdwrerr, using misdom and ms equ as appropriate for the
access desired.

2.4.3.9 Auditing

Auditing in System V/MLS is initiated during the transitio, from single-user to multi-user mode.
The command satstart creates and initializes the audit trail by invoking sismap, which reads the raw
device upon which each file system exists. The system administrator must designate the desired
target file(s) for the Security Audit Trail (SAT) to be written to. The maximum size of a SAT file
is configurable. The default maximum size is 5000 logical blocks, where a block can either be 512,
1024, or 2048 bytes depending upon the device type.

The audit trail rile itself is owned by root, has group root and has rile permissions set to rw-
(0600), meaning that only the audit trail daemon and root have read/write access to the file. In
addition, the audit trail is protected at SYSHI. If new levels or categories have been added to the
system then satstart will calculate the new SYSHI and label the audit trail appropriately, when the
system is brought into multi-user mode.

There are two vways in System V/MLS for an audit record to be written; either internally through
kernel probe points or directly through user-generated commands. Kernel probe points function as
follows: for each probe point, there is an associated SAT function which collects all of the necessary
information about that particular event into a trace record. A trace record is a binary record
containing a header and data block describing the event to be recorded.

The trace records are buffered in the sat pseudo-device. The satsave daemon (running as root) reads
the trace device, /dev/sattr000 and then writes the trace records to the audit trail file. The sat
device driver uses a linear buffer of fixed size 7 and uses the kernel routine copyout to move
characters to the satsave daemon. If the audit buffer is full, the process which caused the record to
be generated sleeps until there is room in the buffer. After the next read of the trace device, all
sleeping processes are awakened and any blocked audit records are written to the buffer.

If no more audit records can be written because the audit trail has become full, the audit trail
daemon will bring the system down to single-user mode automatically rather than allow records to

7. Althought the huffer is of rxed size, it is a site configurable option. The default size of this buffer is 4006 bytes.

- 57 -

Revision 10.4 overview.mm (Revis,.d 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

be lost. Audit trail records which remain in the buffer when the audit trail daemon is stopped or
killed are held in the buffer while the system is in single-user mode. When the system is brought
into multi-user mode again, the data is written to the next audit trail file.

If the audit trail daemon iannot write the audit trail because of hardware or software failures, the
buffer will eventually become filled and all user processes will block upon executing auditable events.
When this happens, the only way to restart the system is to bring it down to firmware mode via the
reset button or the power switch. If the reset button is used, the core image of the system can be
saved and the buffer can then be analyzed off-line to see what auditable events occurred just before
the system crashed.

Another method for generating audit records is by user commands through trusted processes writing
directly to the sat pseudo devices. There are 16 minor devices defined with the sat device major
number. The sat device with number 0 is read by the satsave daemon. Minor devices 1 through 15
provide a user level interface to the audit trail. This User Level Interface (ULI) is used to record
auditable events that can only be inferred from kernel level trace records. For example, the addition
of a new user to the password file can be inferred from the ezec of an editor followed by a successful
open of the password file. Unfortunately, there would be no explicit record of what the
administrator did to the password file. However, a probe point in mkuser can easily record this
information. For a list of the ULI audit trail probe points see page 92, "Audit'. These probe points
use the ULI to insert information into the audit trail.

The user level interface is divided into 2 categories: exclusive open and multiple open devices.
Devices with minor number 1 through 7 are exclusive open and as such can not be opened by more
than one process at a time. Devices with minor number 8 through 15 are multiple open devices.$
This distinction is made in the sat driver.

Auditable events on System V/MLS are allocated to one of 32 audit channels based o nthe type of
the event. Each of the 32 channels has 8 subchannels which are used to specify details particular to
each channel or major auditable event. For example, file access grants are divided into those that
involve read and write access; the read vs. write distinction is recorded by writing read grant records
to a different subchannel than that used for write grant records. Channels are enabled and disabled
with an ioctl call on the sat device with minor number 0. This ioctl is restricted to the superuser
and only sets the appropriate channels when the system is brought from single-user to multi-user
mode.

The sat device with minor number 0 allows the following operations: read, and ioctl. The other sat
devices only allow write. This does not prohibit the devices from being opened for other operations,
but the other operations are disallowed when attempted.

Anyone granted access to the operator's console when the system is in single-user or firmware mode
has the capability to control and modify the TCB. Actions taken at this time can not be audited,
since the satsave daemon only runs when the system is in multi-user mode.

8. Cnrrently no trwiqted protess makefv , of the in,tipi open devices.

- 58-
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.4.3.10 Trusted Path

System V/MLS is capable of supporting a trusted communication path between the user and the
TCB hardware and software. The trusted path mechanism varies among the different system
configurations, but it is invariably reliant upon the trusted process /bin/getty. Getty has been
rewritten so that when it detects the Data Terminal Ready (DTR) signal after DTR has been
inactive, it searches for all processes which have that terminal port open and kills them. Getty then
overlays itself with login, and the user may proceed to log in to the host. To ensure that a trusted
path to the host has been established, the user must cause the terminal to allow DTR to drop; this
is most effectively accomplished by cycling the terminal's power.

In addition to the trusted communication path at login, when operating on the 630 MTG terminal
all trusted system commands that require interactive confirmation use a trusted path window. This
window is created by the trusted command and is logically isolated and unmistakably
distinguishable from other paths.

2.4.3.11 User Identification and Authentication

System V/MLS requires all users, including privileged users, to identify and authenticate themselves
before they are allowed to access system resources. Users identify themselves by entering a login ID
and authenticate themselves by entering a password which consists of six to eight alphanumeric
characters. Identification and authentication information is maintained in files within the /Ws
directory. Only system administrators may gain access to this directory; it is protected from write
access by the syktem mandatory access control policy (stored at SYSTEM label), and is protected
from read access by the system discretionary access control policy.

System V/MLS removes the sensitive information (e.g. password) from the publicly readable files
/ete/passwd and /etc/group, to the protected files /mls/passwd and /mls/group. These protected
files are ASCII files which are referred to as 'shadow files".

/mls/passwd contains the following information for each user:

- login name

- encrypted password

- user ID

- group ID

- initial working directory

- initial program to invoke upon login

/mls/group contains the following information for each group:

- group name

- state indicator (if marked to be removed) and secadm flag

- group ID

- list of all members of the group

At login, a user is assigned a login privilege. The user may specify a privilege as an argument to
login; if the user and the terminal are both permitted to operate with that privilege, it will become
the user's login privilege. If no privilege is specified at login the user will be assigned his minimum

- 59 -
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report ATkT System V/MIS
System Overview

allowable privilege, provided that that privilege dominates the terminal's device minimum, and is
dominated by the terminal's device maximum. If the user's requested or default privilege is outside
the range allowed for the terminal, or if the privilege does not exist, login will fail. The minimum
and maximum clearances for each terminal device are kept in the /mls/cleardev file. The minimum
and maximum clearances for users are kept in the /mrs/clearances file.

After login, users may change to any defined privilege, given that:

- The label associated with the privilege is within the user's clearance range.

- The label associated with the privilege dominates the user's current level.

- The label is within the range established for the user's login device.

- The user is a member of the privilege that he or she is attempting to change to.

For further information see page 51, "Changing Subject Sensitivity Label Interactively".

When a user logs in, System V/MLS creates an entry in the /mls/sessions database. This database
is actually a directory, which has an entry (a file) for every terminal device that a user is currently
logged into. These files, in turn, contain information about the user logged into the terminal, and
the maximum and minimum clearances of that user for that terminal session. This information is
used by certain user-level TCB commands (e.g. newpriv) in order to ensure that a user may only
operate within the constraints defined at login time. The sessions database is also used to maintain
a record of terminal devices which may be held open by a user process after a login session has
completed. This record is then used by getty to find and kill all such processes. This allows getty to
ensure a trusted path for user logins.

There are two ways for a user to obtain superuser privileges: in the first method, administrators
must first login as SYSTEM level users. This level is less than the nonprivileged users' minimum.
After an administrator enters the su command, he must enter the superuser password in order to
acquire administrative capabilities. The second method involves obtaining physical access to the
console terminal device when the system is being initialized, and accessing the system in single-user
mode. This method may not require the use of a password, depending upon the exact configuration
of the system; however, it is expected that the system console and the CPU hardware are restricted
to only the most trusted users of the system.

2.4.3.11.1 Adding Users

Only a syst 'n administrator may set up user accounts on the system. The system administrator
uses the adduser command to add users to the system. The following information is requested by
adduser

- login ID
a string of alphanumeric characters which may be specified by the system administrator. The
system generates unique user IDs (numbers), each corresponding to a login ID. Login IDs are
recorded in the audit trail for purposes of accountability.

- default privilege

- minimum and maximum clearances

-- home directory

-60-
Revision 10.4 oi-rview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

- initial program invoked upon login

- user's real name

After the system administrator provides this information, the automatic password generator
provides a choice of several passwords (up to five), until the administrator selects one. By default,
passwords generated by System V/MLS are between six and eight characters in length, and include
two numeric characters. The administrator has the capability to override the password generator
and can enter a password of his choice. After the administrator selects a password, adduser updates
the appropriate files (i.e. /etc/pasawd and /mls/passwd). Next, the administrator must
communicate this password to the user in a secure manner. When the user logs in for the first time
the automatic password generator provides a new password for him. Guidance on these procedures
are provided in the System V/MLS Trusted Facility Manual and the System V/MLS User's Guide
and Reference Manual. Users may change their passwords in the same fashion as the system
administrator; however, they are not allowed to override the password generator.

When the administrator is defining a new user account, he has the option of assigning a minimum
and maximum required time period for the user to change his password. The minimum ensures that
the user cannot change his password before this time expires, and the maximum forces a user to
change his password after this maximum time period expires. This process, known as password
aging, is beneficial in reducing the possibility that a password can be determined and used
indefinitely by an intruder.

2.4.3.11.2 Deleting Users

In order to remove a user from the system, the system administrator must either remove or change
the ownership of all files belonging to that user. To locate these files the administrator uses the find
command, which has options to remove or change the ownership of the files. Find recursively
descends the directory hierarchy for each pathname provided and searches for the specified files.
Next the system administrator uses the deluser command to remove the user from the group,
password, and clearances riles and remove the user's login directory. The administrator is advised in
the TFM to use the rmuser command which invalidates the user's password rather than completely
removing the user from the system. Leaving the user in the passwd file ensures the user's UID will
not be reused. In this case of a removed user, the user's login ID (login name) is not removed from
all groups to which he or she belonged (e.g., group file is not modified). Therefore system
administrators are ad- msed to not reuse login IDs.

2.4.3.12 Object Reuse

System V/MLS disallows scavenging of deleted information on the following storage objects:
directories, regular files, special files, named pipes, unnamed pipes, memory, shared memory
segments, message queues, semaphores, and the 630 MTG buffers. In addition, System V/MLS
supports the object reuse requirements for mountable media (cartridge tapes and diskettes) through
administrative procedures. These procedures are explained in section 5.6 in the System V/MLS
Trusted Facility Manual.

2.4.3.12.1 H1le System Objects

The System V/MLS TCB enforces the object reuse requirements (as described below) on the
following filesystem objects: directories, regular riles, and special files.

- 61 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
System Overview

2.4.3.12.1.1 Disk Block Allocation

System V/MLS allocates disk blocks in a manner which ensures that object reuse is not possible for
each of the previously mentioned filesystem objects. The system organizes and maintains a linked
list of available disk blocks. Each link in the list is a disk block that contains an array of free disk
block numbers; the last entry in the array is a pointer to the next block in the list.

S5afloc causes the kernel to obtain an available block from the superbiock list. If this block is the
last available block in the superblock list, the kernel uses this block as a pointer to fill the superblock
list with free disk block numbers.

Then the kernel allocates a free disk block and buffer for this block. The kernel routine cirbuf causes
the kernel to zero this buffer. When the user saves the data, the kernel will copy the contents of the
buffer to the associated disk block.

2.4.3.12.1.2 Pipes

Both named and unnamed pipes use kernel buffers to store data. The TCB clears the buffers of any
previous data (see Disk Block Allocation). A pipe may only use a maximum of ten buffers at any
one time. Unnamed pipes retrieve their inode and blocks from the pipe device pipefstyp, and then
are allocated separate read and write open file table entries. Named pipes retrieve their inode and
blocks from the filesystem, and then are opened just like a normal file.

2.4.3.12.1.3 Memory-Based Objects

The object reuse requirement is applicable to memory-based objects such as real memory pages and
shared memory segments. The object reuse mechanism for these objects is described below.

2.4.3.12.1.3.1 Memory

System V/MLS utilizes the demand paging mechanism described on page 25, 'Memory Allocation',
to enforce the object reuse requirement on memory. When a process requires additional memory,
the growreg kernel routine determines the number of new pages needed, and initializes the new
pages. This initialization involves marking the pages as invalid and setting the *demand zero flag'.
The demand zero flag indicates that the page should be cleared when the process first references the
page(s). When the process references the page, an invalid page exception occurs (since the page had
previously been marked as invalid), causing the memory manager to be invoked. The memory
manager examines the demand zero flag, and if set, clears the page and marks the page as valid.

2.4.3.12.1.3.2 Message Queues and Semaphores

When the system is initialized, the TCB designates specific areas of memory for message queues and
semaphore maps. These maps (or tables) are areas of memory that contain pointers to message
queues and semaphores. The main kernel routine initializes both maps (message queues and
semaphores) to all zeros. Thereafter, message queues and semaphores are cleared upon deallocation
via magctl, and semc!. When the msgctl routine is called with a value of IPCRMID, the message
queue identifier is removed from the system and the appropriate message queue map entry is
initialized to zeros. A process which has been sleeping on an IPC message queue which has been
deleted is awakened and returned an error. Thus the message queue has been cleared, deallocated,
and is ready to be used again. System V/MLS handles object reuse for semaphores in a similar
manner. The semeti kernel routine sets all semaphores associated with the given semaphore
identifier to zero, if IPC RMID is set.

- 62 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.3.12.1.3.3 Shared Memory Segments

Shared memory is accessed (read and written) exactly the same as regular memory, but controlled
through IPC system calls. When a shared memory segment is first requested, growreg is called to
zero out, then allocate the memory to the subject requesting the segment. Thus, steps to eliminate
object reuse are performed for shared memory segments immediately before allocation.

2.4.3.12.1.3.4 630 MTG Buffers

The object reuse requirement is applicable to the 630 MTG buffers and is described in the 630 MTG
Intelligent Terminal section of the report (see page 71, "The 630 MTG Terminal Implementation').

2.4.3.13 System Backup and Restore

File backup and restoration is considered a system administrator duty. Backup is done using either
the sysadm backup or cpio and find commands. File restoration occurs with sysadm restore or cpio.

When a file backup occurs, the GID is written to the backup device along with the file data. The
GID is an unsigned short integer, which indirectly references the security label using the /is/labels
rile. Backup tapes are physically labeled by the system administrator with sticky labels representing
the sensitivity level of the tape.

File restoration occurs by manually checking all files to be restored against the /mls/group.retired
and /mls/passwd files to ensure that the UID and GID associated with the file are still valid.
Administratively, GIDs should not be reused during what would be considered to be the 'normal
life' of a backup tape. Files on tapes being restored which are older than this specified reuse
interval must be considered to be unlabeled. Tapes containing files without valid labels must be
handled correctly by the system administrator. Such files should be considered to be SYSHI, until
reviewed by the system administrator. Files restored with invalid ownership information must be
assigned to a new owner by the system administrator.

2.4.3.14 Trusted Processes

A process must be trusted if it is given a privilege which permits it to violate the system security
policy. There are different ways in which a process may gain this privilege; these may be broken
down into three categories:

Those processes which are relied upon to actively enforce the system security policy;
these programs have intrinsic privilege, regardless of who executes them. Programs
which setuid to root, e.g. /bin/ps or /bin/passwd fall into this category.

Those processes which do not have intrinsic capability, and which must be executed by
the system administrator or a trusted process to take advantage of that user's privileged
status. These are not permitted to be used by nonprivileged users, but exist for the
system administrator to use in order to set up or administer the system; e.g.
/usr/bin/mkuser or /usr/bin/rmuse r.

Those processes which the system administrator (or any nonprivileged user) may execute
in the course of day-to-day operation, which must be trusted not to abuse privileges
when they are executed by a user who possesses them; e.g. /bin/cat or /bin/Is.

There are numerous trusted processes in the System V/MLS system. Programs which fall into the
first of these three categories (as well as /etc/getty, /b in/login, /usr/bin/layers which are invoked
by setuid to root programs and thus run as root) are discussed in some detail below. Programs of

- 63-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

the second and third type have been evaluated by the team, and are listed in Appendix C (see page
C-1, 'Trusted Computing Base Components'). The processes described below are listed in roughly
alphabetical order, except in those cases in which several similar trusted processes have been
grouped together.

/bin/chpriv: This program is a System V/MLS extension of the operating system which may change
the group of the object, or its security label, or both, depending upon the given argument string. If
the label and group provided as arguments to chpriv do not map to a va'd privilege, an error is
returned. The modified file attributes exist in the object's inode. For further information on the
reclassification policies see page 89, 'Mandatory Access Control'. This command must be setuid to
root in order to permit modification of the inode and access to the TCB data files which provide
group, label, and privilege information.

/bin/df, /etc/devnm: This is one program (/etc/devnm is a link) which provides information about
disk devices. When the program is executed by the name /bin/df, it returns information about
space available on disk devices. It has options which allow it to search raw devices and print total
blocks used as well as blocks available. When executed by the name /etc/devntr, it provides a
mapping between file system names (such as /usr) and the actual physical devices upon which they
are mounted. Neither program has any security-relevant function, but because of its ability to
access raw devices, it must be setuid to root.

/bin/ipcs: This is a utility which provides a report on the status of interprocess communications
throughout the system. Under System V/MLS ipcs provides information on all the objects
dominated by the user. ipcs is capable of reporting information about message queues, shared
memory, and semaphores. In order to obtain this information, it looks directly into /dev/kmrne, and
therefore must be setuid to root.

/bin/labels: This is a utility program which formats and prints any of the security labels defined to
the system in a human-readable format. This command is used to determine the security label of
any file to which an invoker has mandatory access, the invoker's current operating security label,
the security label associated with any given privilege, or the discretionary group of an object. In
addition, this command is also used to construct labels from given level and category names. The
command parses its arguments to determine what information is to be returned; it then accesses the
TCB data files /mls/labels, /mls/clearances, /mls/levels, and /mls/categories in order to gather the
information it needs to return to the user. The command verifies that the user is authorized to see
the information, and will print an error message if the user is unauthorized to see the data
requested. Because of its need to access TCB data files, labels must be setuid to root.

/bin/login: This is the program which identifies and authenticates users on the system. login h I
several functions:

- read the user's password and compare it against the encrypted password stored in
/mls/passwd;

- compare the user's requested or default login security label with entries in the
/mls/group and /mls/clearances files in order to verify that the user is initiating a
session within his or her authorized range of security labels.

- check the requested or default login security label against the file /rrds/cleardev, which
contains device maximum and minimum security labels.

-84-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MLB
System Overview

- determine terminal type from the entry in /mls/ceardev.

- determine (again from information in /mls/cleardev) what if any special port handling
programs may be required for this device (e.g., 630init). If such a handler is required,
then login forks a copy of the handler and releases the terminal to its control. If no
handler is required, login forks a copy of the user's shell, as specified in /mls/passwd,
or /bin/sh if none is specified, and releases the terminal to the user.

/bin/mail, /usr/bin/mailx, and /usr/bin/milcheck. All of these programs exist in support of the
multi-level secure mail system which operates under System V/MLS. mail and mailz are similar in
that they provide a user interface th'rough which mal can be sent to or received from another user.
Each of them sets its group ID to mau iA. irder to access mail files which are kept in the /usr/mail
directory. The primary differences between the two are features: mail is the "standard' Unix
System V mailer. It lacks many of the more sophisticated features of mail:, mail: allows far greater
flexibility, and incorporates a number of extensions which facilitate its use as a mailer for use in
sending mail across networks (although networks are not included in the evaluated configuration).
Traditional UNIX mail systems are quite simple; a directory (normally /usr/mail) is set up and its
permission bits set so that only users operating with the group ID of mail are allowed access. Each
user's mail is kept in a separate file in that directory. The individual mail files are owned by
individual users. /uar/mail is a SECURED directory; because of this, it has been possible to
implement a multi-level mail facility with virtually no modification to the underlying mail
mechanism. Since /bin/mail was not modified and given root privilege, read-down of mail is not
possible. The system administrator must define a mail subdirectory for each label at which the
system is to support mail, but other than that, the mail system functions at multiple labels quite
transparently.

In practice, the multi-level secure mail system occasionally inconveniences users, who may not realize
that they were sent mail at a label within their clearance range, but above the clearance of their
current terminal session. To alleviate this potential problem, the system developers provided a
mailbox-checking facility. mailcheck is a System V/MLS extension which allows users to determine
whether there is mail in mailboxes at any or all of their other labels. mailcheck notifies the user of
mail. If the user has mail at levels dominated by his or her current operating level, mailcheck prints
the security label of each level in human-readable form, although does not print the contents of the
message(s). If the user has mail at a level not dominated by the user's current level (but within the
user's clearance range), the string '(and other levels)' appears in the output. This message does not
convey any information about the actual message(s) or about the level of the message(s), other than
the fact that at least one other message exists within the user's clearance range. It is a somewhat
incomplete implementation of a secure mail facility in that it permits a downward flow of
information. This is acceptable in a BI implementation. mailcheck does not report mail detected in
a mailbox above the user's maximum clearance. As an option and a convenience, mailchecc will
forward mail from lower labels up to the current operating label in order for a user to read mail of a
lower level. In order to access all users' mail files, the mailcheck program must be setuid to root.

/bin/newgrp: This program allows a user to change his or her discretionary access group after
logging in, thus eliminating the need to log off and relogin at the new group. It checks the
/mls/group rfde to determine the user's authorized groups; i.e., that the requested change is to a
valid group and there is a privilege in that group (of which the user is a member) corresponding to
the user's current operating label. A new shell is then created with the user's real and effective
group id changed to the target group; the new values are used in mediating access control decisions.
If the newgrp command is invoked as /bin/newrp, then the user's original shell remains in the

- 65 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

background, and is reactivated upon termination of the new shell. This is done by the fork and ezec
system calls. However, if newgrp, the shell built-in, is invoked, then the current shell is overlaid
with a new shell. The shell built-in only uses the ezec system call. In order to modify the user's
group ID values (which are stored in memory-based tables), the program must be setuid to root.

/bin/newpriv: This program allows a user to change his or her operating privilege. It is discussed in
detail elsewhere in this document (see page 51, 'Changing Subject Sensitivity Label Interactively').

/bin/pasawd: This is the password setting and changing program in System V/MLS. It includes
System V/MLS extensions, among which are the ability to define a minimum password length, the
ability to require numeric characters in addition to alphabetics, and the ability to generate pseudo-
random passwords; all of these features are enabled in the standard configuration of System V/MLS.
passwd generates pronounceable random passwords which may be tailored to some extent by the
user, based upon the value stored in the shell variable PASSWDOPTS, which determines ordering
of syllables between alphabetics and numerics. The system administrator has the ability to set any
user's password, and may explicitly override the random password selection mechanism. Since
pasawd modifies the file /nis/pasawd, it must be setuid to root.

/bin/ps: The ps command displays information about the status of processes on the system. When
executed by the system administrator, ps is capable of displaying the status of all processes on the
system; when executed by any other user, it will only display information about processes owned by
that user and dominated by the label of the process which invoked the ps command. ps must run
setuid to root in order to access the device /dev/mem, from which it extracts process information.

/bin/su: This is the command which allows a process to assume the real and effective UID of the
superuser (if the superuser password is known), or of any other user of the system, provided one
knows the password for the target login ID and is operating at the SYSTEM label, or is currently
operating as superuser. au is the only way of becoming root (superuser) on System V/MLS, and su
to root is restricted to terminals which have a device minimum label of SYSTEM. Users must be
operating at the SYSTEM label in order to au to root or any other user. Since no untrusted user is
expected to be able to login at the SYSTEM label (System V/MLS uses this mechanism in order to
help ensure the incorruptibility of system code), very few user terminals should have this capability.
Because su must be able to create a process which has a UID of root, it is a setuid to root program.

/etc//g.tty: This program exists for every terminal line until a user attempts to login. Each getty
resets its process group using the setpgrp system call, calls open for a particular terminal line, kills
any background processes that have the terminal port open, and sleeps until the system senses a
connection. Upon receiving a login name, getty overlays itself with login.

/usr/bi/addgrp, /usr/bin/addpriv: These programs are System V/MLS utilities which allow the
owner of a group or privilege to add members to them. These commands control much of the
discretionary access control mechanism which exists in System V/MLS. In order for a user to grant
discretionary access to a file, the user can create a group or privilege (using the mkgrp or mkpriv
command described below), and set the group or privilege of the file to the new one by using the
chgrp or chpritt commands. The user may then change the permission bit settings on the file (via
the chmod command), granting the desired access to group members. The user can then add
members to the group or privilege with the addgrp or addpriv commands. Operation of the
commands is as follows: they accept as arguments the name of the group or privilege (if given a label
and group, addpriv constructs the privilege name from that information), and the name of a user to
be added to that group or privilege. The superuser may add members to any group or privilege,
regardless of its ownership. Because these commands manipulate the shadow group file,

-66-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/NLS
System Overview

/mls/group, they must be setuid to root programs.

/tsr/bin/6OOinit: This program is used to initialize and verify 630 MTG terminals. This is
accomplished by downloading the chk680 program, which verifies the state of the terminal, and if
these checks succeed, by downloading fw.mods creates a secure smart terminal environment. The
details of this program are discussed elsewhere in this document (See page 72, "The 630init
Process').

/u.r/bin/at, /usr/bin/batch, /sr/bin/crontab: These programs are used to schedule execution of
programs at a later time or date, or defer execution of programs until the system load decreases.
Specifically, at and crontab allow a user to dictate a time and date for execution of a command
sequence. batch submits a job for processing as soon as system load permits its execution. Jobs sent
via batch go into a different CPU queue, and have a lower execution priority than ordinary
interactive processes. All of these programs may be restricted by the use of files which will
specifically allow or deny access to users identified by the system administrator. These programs
require the ability to setuid to any user ID which may submit a job for processing, so all must run
setuid to root. In System V/MLS the ability to execute programs through these channels is
restricted to a handful of administrative IDs.

/usr/bin/clearances: This is a System V/MLS utility which informs a user either of his or her
maximum and minimum authorized security labels on the system, or of the current session
maximum and minimum. If executed by the superuser, clearances is capable of reporting all of the
clearances available on the system, or the clearances for any user, or which users have access to a
particular clearance. Because this program accesses the shadow group file and the /mls/clearances
file, it must be setuid to root.

/usr/bn/dominates: This program is used to compare two security labels passed as arguments. If
the first label dominates the second label then the character "0" is written to standard output and
the exit status is 0. Otherwise, the character "1" is written to standard output and the exit status
is 1. Since dominates accesses the /mIs/categories and /nms/levels files, it must be setuid to root.

/usr/bin/dmdld: The downloading of software can only be initiated by the trusted process dmdld.
The dmdld program is discussed in detail elsewhere in this document (See page 78, "Downloadable
Software'). Since it makes use of the JBOOT ioctl, (which is restricted to root), dmdld must be
setuid to root.

/usr/bin/lp, /usr/bin/cancel: ip arranges for the named file and associated information (collectively
called a request) to be printed by a line printer. lp associates a unique ID with each request. cancel
cancels line printer requests that were made by the Lp command. Specific requests may be canceled
by passing the request ID as a command line argument to cancel. Both of these programs
accomplish their tasks by sending messages to the lpsched daemon by writing to the named pipe
/usr/spool/lp/FFO. Since the pipe is at the system level, both programs must be setuid to root.
The cancel command immediately resets its UID to lp and GID to bin, to enable it to write to the
pipe without having to continue to run as root. However, the Ip command must continue to run as
root since it needs to not only write to the pipe, but also to read riles of various levels (the riles
being printed). lp uses the access(2) function to ensure that the user is authorized to read the file for
printing.

/usr/lib/lpadmin: The lpadmin command is used to administer printers within the LP subsystem.
Its three usages are to:

- 67 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MLS
System Overview

- set the system default destinations which lp checks when no destination has been
explicitly specified.

- remove a printer from the LP subsystem by deleting the request directory, the qstatus
entry, and the entries associated with the destination.

- change attributes of a printer (e.g. change pstat entries to reflect that the printer is
hardwired, establish a new interface for a printer, select a model interface program for a
printer, associate a new device with a printer).

ipadmin must be setuid to lp in order to write into /usr/spoo/lp.

/usr/bin/sgrp, /usr/bin/spri. These commands list membership of all groups or privileges to
which the user belongs (whether the user created the privilege or group or was added to the privilege
or group). In addition, lspri can list for superuser all privileges that a given user is a member of.
/usr/bin/lsgrp is a link to the program contained in /usr/bin/lspri. Because the program must
access the /mi/group file, it must be setuid to root.

/uer/bin/lpstat: This program provides a mechanism through which all users may inquire about the
status of the printers connected to the system. Various parameters determine what status
information should be printed; specifically, one may determine whether a given printer is currently
accepting requests, is enabled, has output requests queued, etc. Because Ipatat retrieves its
information from tables in memory to which access is restricted, it must be setuid to root.

/usr/bin/mkqgrp, /usr/bin/mkprk: These are programs which allow a user or system administrator
to define new discretionary groups or privileges on the system. If either command is executed by a
non-privileged user in order to create a new group, that user owns the group, and may add members
to and delete members from it (if the system administrator creates a group or privilege, the first
member he adds is considered to be the owner of the group or privilege). The group owner may also
create privileges based on the group via the mkpriv command. A typical usage sequence would be as
follows: userA wishes to establish a privilege called FUNNY, with members Larry, Moe, and Curly,
operating at the label SECRET. First, the user would establish a discretionary group called
FUNNYGRP, using the mkgrp command. Then, using the mkpri command and specifying label
SECRET and group FUNNYGRP, userA can create the privilege FUNNY (and explicitly add
Larry, Moe and Curly to its membership as it is created). The privilege FUNNY will then exist at
the desired label and with the desired members. Both of these commands (mkgrp and mkpriv)
manipulate the shadow group and privilege files, and must therefore run setuid to root.

/usr/bin/modpri This utility modifies the /mls/group file entry for a specified privilege. It may
be invoked by superuser or by the owner of the privilege. Presently the only option supported is the
-r option, which allows the user to rename the specified privilege. Since modpriv modifies the
/mls/group file, it must be setuid to root.

/usr/bin/modgrp: This utility allows the transfer of ownership of a group to another user. Only the
current owner of a group (or superuser) can transfer ownership of that group. When this occurs,
ownership of all privileges associated with the specified group are also automatically transfered to
the new user. Since modgrp modifies the /mls/group file, it must be setuid to root.

/usr/bin/mvprit. This is a utility which allows a user to move a rile from one directory into another
directory (with a different label than the first directory) which has the same label as the ile. This is
necessary in some circumstances 'ue to the ordering of the filesystem. When moving a file between
directories of equal labels, the standard mv command can be used. However, System V/MLS MAC

-68-
Revision 10.4 overview.mm (Revised 5/24/91)

I - _ . i i I - - -m . '

Final Evaluation Report AT&T System V/KS
System Overview

policy prohibits this command from moving files between directories of differing labels; for this,
mvpriv must be used. The label of the file being moved must be the same as the label of the target
directory. Also, the name of the file can not be changed (as it can with mv) when moved via mvpriv.
mvpri is setuid to root since it needs to violate MAC policy by writing to at least one directory
with a label different from the label of the invoking process.

/usr/bin/delgrp, /usr/bin/delpriv: These two utilities delete members from a group or privilege.
Only the owner of a group (or superuser) can delete members from that group. When this occurs,
the members are also automatically deleted from all privileges that include the specified group.
Similarly, only the owner of a privilege (or superuser) can delete members from that privilege- The
owner can delete members of a specific privilege or members of all privileges that include a specified
group or a specified label (with the owner's current operating group).

/usr/bin/rmgrp, /usr/bin/rmpriv: These two utilities remove groups or privileges from the system
data files. Upon deletion from the system, the group and privilege numbers are set aside, for
possible reuse at a later time. The procedure for reuse of privileges is detailed in the System V/MLS
Trusted Facility Manual, which advises against doing this; it also lists procedures which may be
followed to ensure that any reuse of group or privilege IDs will not contravene the system security
policy. Both of these programs manipulate TCB data files, and therefore must be setuid to root.

/usr/lib/enable, /usr/lib/disable: The enable command enables a printer (supplied as an argument
to the command) to print 1p requests. Conversely, the disable command is used to disable a printer.
Print requests will be queued for the printer, and printed when the printer i; enabled again.
enable/disable requests are communicated to the Ipsched daemon via the /usr/spool/lpiFIFO
named pipe. Since the pipe is at the SYSTEM level, both commands must be setuid to root. These
commands may be executed by the user while operating at any level. They both immediately reset
the CID to bin at the SYSTEM level, and UID to lp so that they may write to FIFO without
having to continue to run as root.

/tsr/lib/maiz/rmmail: This is a program which allows a user to remove an empty .. W.l file from a
mail subdirectory. In order to do this, it must be setgid to mail.

,/usr/lib/mvudir. mvdir is called by mv if the object to be moved is really a directory. mvdir only
allows a user to rename a directory within its parent directory. Directories can not be moved from
one directory to another via mu-dir, mv dir needs to be setuid to root in order to do a move of a
directory.

/usr/lib/sa/sadc: The sadc program samples and saves system activity data by reading /dev/kmem
directly. This data is statistical information (e.g. number of process switches per second, number of
forks per second etc..) To gather this information, it must be setuid to root. The saved data is used
by sar(l) to generate formatted system activity reports.

/usr/spool/ip/interace/510 and /usr/lib/pgmark- The 5310 interface script is called by lpsched
to derive the proper label (operating label of user) for the header and trailer banner pages of the
hardcopy. The 5510 script calls the labels command to determine the correct label for the request.
Page sensitivity labels can be added by pgmark. The sensitivity labels replace the top and bottom
two lines with the appropriate label (operating label of user). If the label is too long for the top and
bottom label areas, a ULI record reporting the "partial" disabling of labels at the top/bottom f
pages is cut and the following string is substituted for the label:

** security label for privilege <privname> too long to print *
The long label WILL be printed in the banner page, although it is likely that multiple pages will be

- 69 -
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

needed to hold each banner page. Printer requests should be passed through a filter such as pr
which inserts blank lines at the top and bottom so no data in lost from the hardcopy. Both are
invoked with UID of Ip and GID of bin in order to access files private to Ip.

- 70 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.4 The 630 MTG Terminal Implementation

2.4.4.1 Overview

The 630 MTG (Multi-Tasking Graphics) terminal supports two to eight logical connections to each
of two hosts multiplexed over a single tty connection each: one data channel for each host window,
plus a control channel (channel 0) reserved for direct communications between the host process
layers and the 630 MTG terminal. Several 630 MTG terminals can be hooked to a host
simultaneously. When a window is created, a data channel is associated with it. The xt driver
(device driver for the virtual terminals) multiplexes I/O via the xt devices onto the real tty
associated with the layers process managing the host end of the windowing protocol. The host

resident application programs (e.g., shell) are unaware that they are executing in a layers
environment; each xt device appears to a host resident untrusted application to be a regular tty
device.

The 630 MTG terminal can be used by a user or by a system administrator, but is not suitable for
use as the system console. This is because it is possible to lose messages since processes which write

error messages to the system console, like login, do not follow the xt protocol.

On the host side of the physical connection, there is an xt driver which multiplexes each data
channel's I/O onto the real tty driver associated with the layers process, managing that tty. On the
630 MTG side of the physical connection, a firmware demultiplexer/controller, demux, receives the
communication from the host. Demux handles control information (such as download initiation
signal) as well as passing data to the appropriate window.

The 630 MTG terminal has routines in its firmware which are called upon when a user requests
certain te-minal functions such as create a window and cut data from a window. A "630 process"

has no relation to a UNIX process running on the host. There is only one process on the 630 MTG.
That process in turn supports "threads'. Threads may be thought of as streams of execution
contained entirely within the 630 process. The 630 process creates and deletes, schedules and

maintains data structures for all threads on the terminal. Each window has one and only one thread

called wproc. Each thread has its own process structure (which contains a field for that thread's
security label), and shares text and globals (neither containing user data) with every other thread.
Threads do not have their own address space. Global variables shared among threads exist within
the address space of the 630 process. Threads do however have their own local variables (such as
program counters) and store them in their own private stacks. A thread's private stack is pointed to

by the process structure. Process structures store the state they are in (e.g., RUN) and exist on a
linked list of process structures. When a thread is executing, data stored in other threads is not
available to the executing thread; although memory which that data might point to remains. This
memory is not available to users due to the restrictions on downloading capability (see page 78,
"Downloadable Software'). The 630 process is a trusted process and is part of the TCB (see page

?4, *TCB Boundary").

When the 630 MTG is powered on or reset, the 'cntlproc' thread is started. This i. the underlying
C ad which reads all mouse input and controls the creation and deletion of window threads. A

thread is created for each window created on the terminal. These threads are called 'wproc'
threads. This creation involves allocating a process structure and private stack for that thread, and

initializing the keyboard queue (input from keyboard) and receive queue (input from host). When a
window is deleted (via mouse option), the thread for that window is deleted. This involves clearing
queues, freeing the stack and unlinking the process structure from the circular queue, thus freeing it.

This circular queue is used for scheduling threads for execution. Each window is securely labeled.

- 71-

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

This is described on page 74, "Window Labels".

2.4.4.2 Logging Into The Host

A user invokes the trusted path on the 630 MTG terminal by powering the terminal down and back
up, or by pressing the shift, Ctrl, and Esc keys simultaneously. When this is done, a new getty is
created and is attached to that terminal's port. Then getty sanitizes the tty line and any xt devices
previously associated with the terminal, and ensures that all processes attached to that terminal
port are killed via the kill system call with the argument "-9, which specifies a nonmaskable
termination signal. Then getty reads the login name and overlays itself with the login program.
Login gets and verifies the password, sets up the environment and checks the device clearances
database (the /ms/cleardev file) for security ranges, terminal types and the name of the handler for
this terminal type. If login doesn't find a handler specified it overlays itself with the user's shell.
Login believes that there is a 630 MTG on the tty line if it sees a handler specified in the device
clearances entry. For example, the following two entries in the /mls/cleardev file show three
devices:

515:4,1,2:1:L:630,/usr/bin/630init:
516:3:0:L:4425:
517:5,1,2::L:630,/usr/bin/630init -a:

In this example, the device with a device number of 515 has a maximum clearance of level 4 with
categories 1 and 2; has a minimum clearance of level 1; is a login device hardwired to a 630 MTG
terminal; and executes /tusr/bin/650init in place of the usual login shell. The next device, also a
login device, has maximum clearance of level 3 and minimum clearance of level 0 (SYSTEM); is
hardwired to a 4425 terminal; and runs the usual login shell. For a 630 MTG, login should find
/usr/bin/630init specified as the handler. The final device shown here with a device number of 517
has a maximum clearance of level 5 with categories 1 and 2; has a minimum clearance of level 1; is a
login device (i.e., a device on which a getty can be spawned) hardwired to a 630 MTG terminal;
executes /usr/bin/630init in place of the usual login shell; and will transmit to the audit trail all
data that is declassified on the 630 MTG terminal.

2.4.4.3 Logging Into the Second Host

The trusted path on the second host is invoked by dropping the DTR (Data Terminal Ready) signal
which can be accomplished by exiting the second host connection via the mouse menu. The process
then continues as described above.

2.4.4.4 The 6301nit Process

630init is a transient process which is overlayed by layers (as explained below). This program first
verifies that the terminal is indeed a 630 MTG with the correct firmware version (version 8;8;6).
Next 630init checks to see if the firmware has a recognised checksum. If the firmware responds to
the checksum inquiry with a valid checksum, 680init concludes that the user has already
downloaded the System V/MLS firmware modifications and overlays itself with layers immediately.
This is the case when the 630init process is invoked on a second host connection.

Otherwise, 630init downloads the c!ik68O program, which verifies the state of the terminal, and
computes a vector table checksum and a ROM checksum (checking for an un-corrupted terminal
ROM). Chk630 reports the terminal state and computed checksums to 630init and returns the
address of the end of ROM as an extra check to make sure that the firmware modifications are

- 72-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report ATkT System V/MIS
System Overview

downloaded to the correct place. Finally chk6S0 determines that no printer is enabled and that the
cartridge port is not in use.

If these checks succeed, the fw.mods executable file is downloaded (by 630init) and run on the 630
MTG terminal. fw.mods writes the security enhanced routines into RAM and sprinkles
modificatiops throughout the RAM vector table so that the terminal will support the System
V/MLS security policy; in doing so, it createe a secure smart terminal environment. The two main
parts of this firmware modification involve:

1. Copy the firmware vector table from ROM into RAM. All functions called by the firmware
will be branched to via this RAM table. fw.mods modifies addresses in the vector table to
branch to multi-level handling routines for the 630 MTG terminal. This ensures use of the
trusted 630 functions.

2. Changes the pointers for the PFkeys which are located in 630 MTG Non-Volatile RAM
(NVRAM) storage, causing them to be made inaccessible; these NVRAM-located items are
effectively nulled each time the terminai's trusted path is invoked. Pointers to setup
information, also kept in NVRAM, are not changed'.

Finally, 630init overlays itself with layers.

2.4.4.5 Layers

Layers sets up the xt0 control connection and the xtl user window, and labels the xtl window with
the security label of that device's minimum label, or of the user's requested label (default=minimum
label), whichever is higher. The label on this window (along with the user's current operating label)
may be changed (through execution of trusted code) by the newpri command (see page 51,
'Changing Subject Sensitivity Label Information').

Layers causes the 630 MTG to operate in layers mode and arranges to pass SIGHUP to all its
descendants. It makes the real tty device private to the TCB. Layers reads its commands from
channel 0 and creates/deletes windows until receiving the exit command. Layers creates new
processes, overlays them with a shell and terminates those processes running in windows to be
deleted. Since layers is invoked directly from login, channel 0 can be trusted as a path for
communication between the terminal and the host. Channel 0 in each set of xt devices will be
private to the TCB. Users cannot invoke layers directly and layers is not a setuid to root program.

From this point forward, the user operates under layers, and may create and delete up to six more
host windows, simply by selecting the New option with the mouse. After selecting the New option, a
submenu is presented for each host. After selecting the appropriate host another submenu is
presented. This submenu is a list of privileges that the user is authorised to operate in. This
privilege submenu was created by layers as a convience to the user. This menu is static and is based
on information obtained at login time. Selecting a privilege from this menu will cause a window to
be created at that privilege. This is accomplished by invoking the newpriv command, rather than
running the user's default login shell. If the user does not select a privilege from the menu but
simply selects the host, the window is labeled with the user's login security label and the user's

9. This is acceptable because terminal characteristics such as screen color and keyboard repeat rate are not security
relevant. Terminal setup options can only be modified by predefined mouse operations.

- 73 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

default login shell is run in that window.

2.4.4.6 wproc

Wproc is the terminal emulator for windows in the layers environment. Once a window is created,
host UNIX processes can be run in that window (e.g., shell). This section discusses how it is started
and what content is stored in its associated structures.

The entiproc thread is the underlying thread on the 630 MTG; it is always running (begins
execution when machine is powered up). Cntlproc initializes the 'Show Label' menu entry and then
loops forever waiting for mouse clicks and setting flags.

When a new window is requested, crtproc creates the wproc thread which then begins execution.
Creation of this (or any) thread involves a number of activities; allocating a process structure,
allocating a stack for toproc, setting the thread's state to RUN, initializing keyboard (buffers data
from keyboard) and receive (buffers data from host) queues (used in the xt protocol), initializing
registers to 0 and specifying the wproc program to run in the thread. Each wproc thread is
associated with a window via specification in the process structure.

When wproc begins execution, it initializes its window structure and draws the label bar on the
window. Then it enters an infinite loop checking flags set by cniiproc. These various flags result in
the processing of mouse actions, label changes, window moves and reshapes, window
activation/deactivation, cut and paste, and keyboard input. wproc constantly polls for these events,
each event having its own service routine.

The window structure contains fields for cursor position, window size and boundaries, length of label
string, etc. The wproc line structure is the structure allocated for each line of text on the window,
and contains the text, its size and pointers to the line which precedes it and the line which follows it.
Other structures wproc uses are structures for specifying window coordinates and rectangles. These
variables are manipulated on the wproc stack.

The wproc thread is labeled (much like a MLS host process has a label) in the process structure.
Whenever a label is sent from the host to the 630 MTG terminal (e.g., at login when the first
window is labeled, at each newpriv after that), the label is stored in the 630 MTG memory. Each
wproc process structure contains pointers to the location in 630 MTG memory where the actual
label is store in canonical and human-readable form.

2.4.4.7 Window Labels

Each window has a trusted, human-readable label. This label is set to be that of the host process
operating "in" the window. The top line of the window is known as the label bar, which is where the
human-readable label is displayed. Writing by user processes in the label bar is disabled by the
firmware. This is accomplished in wproc, which is hardcoded to ignore the escape sequence the host
sends to write into the label bar. Also, since the window's label is stored in the process structure and
not in the window buffer itself, a user cannot move the mouse into the label bar area and click into
it.

To untrusted software running on the host system, each window (xtl-xtn) appears to be a distinct
terminal. Up to seven windows may be active at any given time (deleted windows may be
recreated), at any classification level for which the user and thi terminal device are authorized. It is
possible for the complete security label of a window to be larger than the space available in the
header line. In that event, as much of the security label as possiblc is displayed (the hierarchical
classification is always displayed), and an indicator provided that the label is longer than is shown.

- 74 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

Clicking a mouse button on the appropriate pop-up menu box will display the entire security label
of such a window.

Window labels may change (via trusted code), but they do not "float." In the event that a user
executes the newpriv or exit command to change authorizations, the label of the window in which
the user is operating will reflect the change. No other window will be affected.

Host windows are labeled in response to an ioctl from the host. All label information is sent over the
xt0 control connection exclusively. The MLSLBLCHG ioctl takes as arguments lengths and pointers
to the canonical and human-readable forms of the label being sent. The program invoking the ioeti
sends it to the virtual channel on which that program is running. The xt driver re-routes the
information to the control channel (xt0) in a message that contains the virtual xt number and the
actual label (in canonical and human-readable form). The xt driver will not allow the ioctl unless it
is sent from a process running as root. Demux receives this control information and passes the
received packets to the doctl routine. Doetl reconstructs the message from the packets, postpends a
"host category bit" to the canonical form, stores the label in both forms in 630 MTG memory, and
sends pointers thread, which saves the pointers in its process structure and displays the human-
readable string in the label bar. If the new label does not dominate the old label, secuity relevant
data is cleared; pointers to the old label are replaced with pointers to the new label and the data
currently in the window (and its scrolling buffer) is cleared.

In the event of a very long label, if there is not enough memory in which to store that label then the
630 MTG will either refuse to create the requested window, or will delete the window.

2.4.4.8 Secure Labeling at Login/Window Creation

During the login sequence layers sets up channel 0, the control channel as a private communication
channel between the host and the terminal. After establishment of this communication channel
layers determines, using lspriv, the permissible privilege set for this session, based on the user's and
the terminal's clearances. The names of these privileges are sent to the terminal on channel 0.
Cntlproc generates the privilege submenu under the "New/Host" menu selection. The privilege list
is stored in the same order in both layers and cntiproc so that when a privilege is selected from the
privilege menu only its index needs to be sent to the host. Also established at this time is an
"Authorization to Declassify" bit. This bit is stored in the 630 process stricture and is set based on
the contents of the the information passed by layers to cntlproc. If the user is a member of the
group secadm or the password field associated with the group secadm contains the keyword
"<ANY>" then layers notifies cntiproc that the user is authorized to declassify information on the
630 MTG terminal"1 .

Next, layers initializes the first window. Before starting the shell which is to run in that window, it
calls the ms library routine devassin to set the security label of the xt device. When devassign sets
the label associated with the xt device, it issues the MLSLBLCHG ioctl to inform the 630 MTG of
the new label.

10. The administrator is instructed in the TFM tn choose hierarchical level nunes to be no longer than 20 characters.

II. This information is established during the login initialiUation and remains static throughout the login session. This
requires that a user log off the system before the authorization can be revoked.

- 75 -

Revision 10.4 overview.nam (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

When a new window is requested via a mouse click, the underlying cntiproc thread reads the mouse
click and sends a command to layers to create a window at a specified privilege. Layers either
invokes the trusted process newpriv to run in the newly created window or if the user requested a
new window with his/her login privilege invokes the process specified by the user's SHELL
environment variable after initializing the xt device by using devassign.

2.4.4.9 Secure Labeling at Newpriv/Exit

The newpriv and exit (or <CNTL-D>) commands call devassign. When devassign changes the label
associated with the xt device, it issues the MLSLBLCHG octL to inform the 630 MTG of the new
label. The terminal then proceeds as before.

2.4.4.10 Window Creation

The enforcement mechanism used to ensure the integrity of windows and their associated buffers is
based primarily upon the memory management scheme implemented by the 630 MTG terminal.
Memory within a 630 MTG terminal is allocated via two calls: alloc and gcalloc, as described on
page 20, '630 MTG Memory Mangement' These calls are used by the terminal and can not be used
by user programs, since downloading is restricted (see page 78, 'Downloadable Software'). Each
window buffer is composed of memory allocated by gealloc. Buffers have a maximum size of 10K
bytes; this is an arbitrary limit imposed by the 630 MTG firmware. When a user creates a buffer,
the terminal ensures that there are 10K bytes of memory space available. If not, the gcalloc memory
pool is compacted. If there is still not a large enough memory fragment, an 'out of memory' error is
returned and the window creation fails (but terminal operations may continue).

Once the terminal ascertains that sufficient memory exists for a new window to be created, layers
sends the label of the connection over channel 0. Cntlproc creates a process structure for a new
wproc thread. The wproc program (executing in the wproc thread) allocates for itself a window
structure (on its stack) and allocates one zero-length data line. This window structure contains local
variables (e.g., window coordinates) and contains no user data. After setting up the window
structure, wproc enters an infinite loop checking the label-change flag at the top of the loop. When
the set flag is detected, wproc clears the existing label on the window, if any, and copies the new
label into the window structure and displays it. The details of this procedure are described on page
74, *Window Labels". As the first line is added into the buffer, the length of the first data line
increases. Each new line which appears on the terminal is allocated another line of memory from the
terminal pool of free memory, and the lines are linked together to form a doubly-linked list of text
throughout the terminal's memory. Since each line in each buffer may be traced back to its header,
all data is still associated with its sensitivity label. When the window buffer fills, lines stored at the
beginning of the buffer are deleted as new lines are created.

2.4.4.11 Local Windows

In the event that a user wishes to create and modify a buffer without use of the host machine, the
630 MTG terminal allows for local windows' - windows which have no process on the host
associated with them. Although there is no host process executing in a local window, each local
window still has an active wproc thread executing and has a process structure associated with it.

Local windows may be created before a user logs on to the host; however, these will be erased after
the trasted path to login has been invoked. Local windows may also be created during a terminal
session by copying the complete contents from a host-connected window (it is "peeled'). Such a
window will have the security label of the window from which the information originated. Security
labels on local windows cannot be changed. Local windows use mouse-based editing. Off-screen

- 76-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

buffering is employed in both host and local windows.

2.4.4.12 Cut and Paste

The 630 MTG terminal associates a buffer with each window, which is effectively a system buffer
which is labeled with the label of the associated window. The user can scroll through these buffers
and 'cut and paste" text from one window to another. This functionality operates in accordance
with the System V/MLS security policy. The cut and paste operation in a window is not an atomic
action. First the user highlights (via mouse manipulation) text to be moved, then presses a mouse
button. Each cut or copy will transfer the text to a newly allocated (via alloc) Global Save Buffer
(GSB), which is effectively a buffer without a window attached, bearing the label of the window
from whence the cut or copied text originated. The label of the GSB is stored in the actual buffer,
unlike window buffers which have their labels stored in process structures. In this operation, the
wproc thread associated with the source window is reading text itself and writing it into the GSB.
The user must then move to and activate the target window, move the mouse to the location where
the text is to be inserted, and press a mouse button. Here the wproc thread associated with the
target window is reading text from the GSB (possibly at a lower level) and writing it into the target
window's buffer. The target window's buffer has the same security label as the wproc thread causing
the action. The 630 MTG terminal will compare, via a simple compare operation on the canonical
form of the labels involved, the sensitivity of the GSB with the sensitivity of the target window. If
the target does not dominate1 2 the GSB then wproc will check the *Authorized to Declassify' bit' 3

and if the user is allowed to declassify information a pop-up window containing the following text is
displayed:

declassify from
<LABELI>

to
<LABEL2>

Button 1 = Yes; other buttons = No

After interactive confirmation has been received the contents of the global save buffer will be
pasted/sent to the target. If the transfer is allowed, the terminal copies the text from the GSB to
the target window. This may take place between any two windows, including local windows
(described above).

Whether a declassification attempt on the 630 terminal succeeds or fails a message is sent to layers
over the trusted chaanel 0. This message includes an indication of whether the requested operation
was granted or denied, what the source and target windows were, the labels involved and if the
.verbose auditing' bit has been set, the full text of the transferred data. Layers collects this
information into a ULI record, which it writes to /dev/sat/tr007.

12. The only label comparision is for dominance, if the two labels are non-comparable, the transfer is considered as a
declassification.

13. This bit is initialized by aterolS) during the login procedure.

- 77-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.4.13 Progranunable Function Keys

On the base 630 MTG terminal, the character strings associated with the user programmable
function keys (PFkeys) are stored in NVRAM. In the security enhanced 630 MTG terminal, a new
PFkey storage area is allocated in RAM during login. There are two program function key areas
allocated, one per host. The result is that the contents of PFkeys will not be retained between login
sessions (on either host).

The PFkeys may be programmed either via sending escape sequences to the 630 MTG terminal or
use of the PFkey edit menu. A program that sends an escape sequence to the 630 MTG to program
a function key will write in the program function key area associated with the host from which the
program is executing. In addition, the label of the process sending the escape sequences must be
equal to the label of the PFkey edit menu. The program function key edit menu has been split, so
that the user may request either host l's area to be displayed, or host 2's. These menus are labeled
with the user login privilege and with the appropriate host category bit. This is required to preclude
cross-host cut-and-paste using the PFKey edit menus.

A user hitting a program function key will cause the 630 MTG keyboard driver to look up the
program function key area associated with the current window's host. Thus, information read from
and written to the program function key area is separated by host.

2.44.14 Downloadable Software

The downloading of software can only be initiated by the trusted process dmdd. DmdSd checks that
the terminal is in layers mode and changes ownership of the tty to root read/write only. It notifies
the terminal (actually the channel associated with the window in which the download was invoked)
to expect a download, using the JBOOT ioctl (which is restricted to root use only). Finally it does
the actual download (sends the program on the same channel) using the xt protocol. When the
download is complete, dmdld changes ownership of the tty back to user with previous access mode,
and execution resumes with the downloaded program.

Downloading software is restricted as follows. Dmdld (setuid to root) only downloads programs from
the diiectory /usr/dmd/bin, which is writable only by root. The TFM prohibits the system
administrator from changing the contents of this directory. The system no longer conforms to the
evaluated configuration if the system administrator adds anything into this directory. Since users
can not write to this directory, they can not write their own downloadable programs.

2.4.4.15 Additional Subjects and Objects Introduced

The 630 MTG terminal supports one entity which can be recognized as a trusted subject. This
entity is a multiple-thread process. It enforces the system security policy on the 630 MTG terminal.

There is only one type of storage object local to the 630 MTG terminal: the buffers in which the
GSB, individual terminal sessions and local windows exist. These buffers are system objects
manipulated by the 630 MTG and are storage objects, in that they contain data which is subject to
the Mandatory Access Control and Object Reuse requirements. They are not sharable with any
other user on the system, and are destroyed when the user ends the terminal session. These window
buffers are not directly accessible by untrusted subjects.

2.4.4.16 Auditing on the 630 MTG

Two security relevant events can occur locally within the 630 MTG terminal. These events are:

- 78 -

Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

1. declassification of data within the 630 MTG, and

2. unsuccessful paste/send operation due to policy violation.

The 630 MTG terminal, upon detection of one of these events, contructs an audit record which
contains all pertinent data and communicates this to layers. Layers upon receiving this information
opens a ULI channel and transmits the audit record to the audit trail. Some events within the 630
MTG terminal, are considered sufficiently audited by inference. For example, window buffer
creation is implicitly audited in that the devassign of the associated xt channel implies the creation
of the window buffer. Actions audited by the host can be distinguished in the audit trail as having
taken place in a specific window. This information is derived from the device and inode number
which are stored in the audit trail. When the audit trail is examined in verbose mode (see page 92,
'Audit') the "window name' (i.e., xt3) is printed. Similarly when two (or more) processes are
created in different windows on a 630 terminal, their creation and the opening of System V/MLS
objects are auditable. Therefore any process associated with a 630 MTG terminal must be presumed
(by the administrator) to be able to exchange data with any other process associated with the
terminal, as long as the communication does not violate the system security policy.

2.4.4.17 LoggIng Out of a 630 MTG terminal

The terminal can detect drop of DTR (Data Terminal Ready) signal at any time during terminal
session.

In order to end a 630 MTG terminal session, the user may take one of three distinct actions: power
cycle the terminal; hold the shift, control, and escape keys simultaneously (this performs a software
power-cycle); or select the EXIT option with the mouse. The first two actions will cause DTR to
drop; the host will detect this, and send the hangup signal to all processes on the host that are
affiliated with that terminal. If a process chooses to catch or ignore the SIGHUP and has not
disconnected itself from the terminal device, it will be killed by getty when the next user attempts to
log in on the terminal device. When power is cycled, RAM is cleared. The reset key combination
causes the terminal to initiate the clear/seftest/reboot sequence. The use of the EXIT option will
send an instruction to the layers program running on the host which instructs it to terminate the
session. When cntlproc gets the mouse click for EXIT, it sends a message to the layers program
running on the appropriate host. Layers then kills all shells running in all windows and sends a
message back to the terminal. On receiving the return message from layers, doctl runs the
unbootmux routine. The unbootmux routine checks to see if this closes the last active host
communication channel. If this is the last host connection, unbootmux writes zeros throughout all
of RAM and then performs a self test. Otherwise, it selectively clears all objects associated with the
closing host. When layers dies, login, waiting for the death of child signal, dies too, and a new getty
is invoked for that line. This will log the user off of the host computer. After terminating all its
descendants, layers restores the real tty to a known state (used by getty). Note that the second host
connection should only be terminated by use of the EXIT option with the mouse. While the
terminal will function properly if the other methods described above are used, they will terminate
both host connections.

Based upon this overview of the functionality of the 630 MTG terminal, it is evident that there are
a number of unique security issues related to this configuration. More detail on the features and
assurances supported by the 630 MTG terminal will be found in Section 3 of this report.

- 79-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

2.4.5 Configuration Management

The system, in order to retain the B1 TCSEC rating, participates in the Ratings Maintenance Phase
(RAMP). This involves identifying all hardware components and tracking all software changes.
There is a configuration management plan in place to track changes made to documentation, source
code, test documentation, and test code. The System V/MLS RMPlan document explains the
configuration management procedures.

The principal divisions of AT&T which will play a part in maintaining the system are the
Technologies Federal System Division and AT&T Bell Laboratories. This section will explain the
scheme in place for managing changes to the System V/MLS product, and will then go on to explain
how changes to the underlying UNIX System V are tracked.

The process for managing changes made to the System V/MLS product is as follows. All changes
are initiated through the creation of a Modification Request (MR). MRs are submitted to the
Configuration Control Board (CCB) in order to assign the MR to the most appropriate
individual(s). These individuals are then responsible for developing a solution for the request as well
as providing support and design documentation. After this step the MR solution is submitted for
approval by the CCB. If the solution is inadequate, the MR is rejected and the problems with the
proposed solution are identified. The MR continues to be submitted with new proposals until the
CCB approves the proposed solution. All MRs are subject to a test analysis, which determines
whether an appropriate test exists, whether an existing test must be modified, whether a new test
must be written, or if code inspection is needed.

Configuration tools used throughout the configuration management system aid in automating
procedures. Currently the tools used are Source Code Control System (SCCS), SABLE, and System
V/MLS Tools.

SCCS records all enhancements and changes made to source code and documentation, comments on
each version, and maintains a history of the changes made.

SABLE assists in the management of product development by performing modification request
tracking, report and query functions, and human factors engineering. Modification request tracking
is the mechanism used to track the current status of any MR. MRs can be in one of a number of
states (i.e., accepted, under-study, deferred, approved, assigned, closed). A history is maintained of
all MRs through all their states. Report and query functions allow the user to pull data base
records (specific or in report format). Human factors engineering allows for a 'customization" of
SABLE users. This customisation involves the setting of various defaults (e.g., preferred editor,
menu vs command line entry).

There is manual interaction in place between SABLE and SCCS. These procedures are described in
the Rating Maintenance Plan for System V/MLS (RMPIan).

System V/MLS Tools are tools specifically developed for configuration management which handle
the tree structure of the System V/MLS product. These tools are documented in the RMPlan.

UNIX System V is configuration managed under the SCCS system at Bell Laboratories, although
the System V/MLS VSAs are not participants in this particular configuration management process.
For every RAMP cycle that entails a new release of the base operating system (UNIX System V), an
analysis will be done by the VSA for each changed source file. All sources for the releases of UNIX
System V to be RAMPed are maintained on a dedicated filesystem by the System V/MLS VSA.
The VSA will use these sources for analysis of all changes. The VSA's analysis will involve contact

-80-
Revision 10.4 overview.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
System Overview

with those organizations responsible for the code, for various queries. The VSA sends the results of
his or her analysis to the CCB. The CCB will be responsible for approving the updates.

If a feature is added to the base operating system that adversely affects the system security and
cannot be fixed, then the component is removed when the System V/MLS product is installed at
the customer site. If the feature can be fixed, then the component is added, if not already present,
to the System V/MLS product's source tree and work proceeds as normal for all MR.

The underlying hardware is not under configuration control at the System V/MLS development
organization, as is the System V/MLS product (with histories of changes online, etc). The RAMP
document 4 requires that the hardware be configuration identified and analyzed. The tracking
process works as follows: When a new hardware base becomes available, the VSA examines the
design and testing documentation. In effect, lie or she does a complete mini-evaluation on the
hardware. The VSA documents this analysis, keeps it on record, and presents the analysis to the
CCB.

If changes made to the underlying hardware are deemed potentially harmful to security by the CCB,
the CCB does not approve that hardware product as an acceptable base and System V/MLS is not
ported to that base.

AT&T Technologies Federal System Division is responsible for maintaining the rating for System
V/MLS. The configuration management scheme enforced for System V/MLS provides added
assurance that any changes made to the TCB will not compromise the trust of the originally
evaluated system.

14. Ruting Maintenanee Phwe Program Document,
NCSC, June 1989.

- 81 -
Revision 10.4 overview.ram (Revised 5/24/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a BI system

3. Evaluation as a BI system

3.1 Discretionary Access Control

3.1.1 Requirement

The TCB shall define and control access between named users and named objects (e.g., files
and programs) in the ADP system. The enforcement mechanism (e.g., self/group/public
controls, access control lists) shall allow users to specify and control sharing of those objects
by named individuals, or defined groups of individuals, or by both, and shall provide controls
to limit propagation of access rights. The discretionary access control mechanism shall,
either by explicit user action or by default, provide that objects are protected from
unauthorized access. These access controls shall be capable of including or excluding access
to the granularity of a single user. Access permission to an object by users not already
possessing access permission shall only be assigned by authorized users.

3.1.2 Applicable Features

DAC is implemented in System V/MLS via protection bits on all named objects enumerated on
page 36, 'Objects'. Protection bits are sufficient to provide self/group/public controls on sharing of
objects by named individuals and defined groups of individuals. System V/MLS also allows for
user-definable groups, called "privileges', which aid in controlling access and realistically fulfill the
requirement of including or excluding access to the granularity of a single user. This is accomplished
by allowing a user to change the privilege of a file to a specific privilege which the user may define,
and then allowing the user to set the access mode bits to allow (or deny) members of the privilege
access to the file. System V/MLS provides a default protection on newly created objects of read,
write, and execute access for the owner of that object and no access to all others. For a complete
description of DAC see page 42, "Discretionary Access Control'.

DAC and the 630 MTG terminal: In the context of the 630 MTG terminal, DAC is a not an issue.
The terminal retains no information between the time one user logs off of the System V/MLS
system and the next user logs on; therefore, the only information to which the terminal has access at
any given time is information available to the user currently logged into the host. The terminal has
no role in mediation of any discretionary access, and therefore need only ensure that the access
control decision of the host is not circumvented. Since the terminal physically does not have access
to information to which its user does not have discretionary access, this requirement is trivially
satisfied.

3.1.3 Conclusion

System V/MLS satisfies the BI Discretionary Access Control requirement.

3.2 Object Reuse

3.2.1 Requirement

All authorizations to the information contained within a storage object shall be revoked prior
to initial assignment, allocation, or reallocation to a subject from the TCB's pool of unused
storage objects. No information, including encrypted representations of information,
produced by a prior subject's actions is to be available to any subject that obtains access to
an object that has been released back to the system.

- 82-
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a BI system

3.2.2 Applicable Features

In System V/MLS, the system administrator is responsible for ensuring that the object reuse
requirements on mountable media (i.e., tapes and diskettes) are followed. The administrator must
reformat the media using the appropriate UNIX format commands explained in section 5.6 of the
System V/MLS Truwted Facility Manual.

The System V/MLS TCB ensures the object reuse requirements are checked for the following:
directories
regular files
special files
named pipes
unnamed pipes
memory
shared memory segments
message queues
semaphores

3.2.2.1 File System Objects

The file system objects are directories, regular files, pipes and special riles. System V/MLS allocates
disk blocks in a manner which ensures that no object reuse is possible for each of the previously
mentioned file system objects (for further information see page 61, 'Object Reuse'). Both named
and unnamed pipes use kernel buffers to store data. The allocation of kernel buffers disallows object
reuse for pipes as well as file system objects (see page 62, 'Disk Block Allocation').

3.2.2.2 Memory-Based Objects

System V/MLS utilizes a demand paging mechanism. When a process requires another page of
memory, the growreg kernel routine determines the number of new pages to be used, and initializes
them by marking them invalid. When the process references the new page, the system clears the
page. Shared memory segments are implemented using the demand paging mechanism. (For
further details see page 61, 'Object Reuse'.)

3.2.2.2.1 Message Queues and Semaphores

When memory for semaphores and message queues is initially allocated, System V/MLS clears this
memory to ensure that no previous data may be obtained. Hereafter, both message queues and
semaphores are cleared upon deallov'ation in System V/MLS. Deallocation occurs when the
IPCORMID command is sent to the magctl or semctl system call.

3.2.2.3 Object Reuse on the 630 MTG Terminal

In order to prevent the scavenging of information from the terminal buffers when the connection to
the host computer is broken, the 630 MTG will zero all windows and buffers, including local
windows and Programmed Function (PF) keys. For the purpose of this evaluation, the term
"storage object' may be defined simply as either a host or local window buffer in the context of the
630 MTG terminal. Each of these buffers is appropriately labeled, and each contains information
and is subject to the object reuse requirement. Eliminating object reuse on the 630 MTG terminal
is effectively a two-step process; first, when a user deletes a window, the window is removed from
the screen and the memory which had been assigned to that window is made inaccessible. This is
done by enforcing a high-water-mark mechanism for each window's address space. Second, all user-
modifiable memory is cleared at the end of a user's terminal session; the terminal detects the Data

- 83 -

Revision 10.5 eval_B1.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a B1 system

Terminal Ready signal (DTR) drop, and upon that signal will zero itS memory.

During a login session on the 630 MTG, all memory allocated for buffers, st-cks and other 630 MTG
system objects, is zeroed out by the allocation ,out:nes alloc and gcalloc.

3.2.3 Conclusion

System V/MLS satisfies the BI Object Reuse requirement.

3.3 Labels

3.3.1 Requirement

Sensitivity labels associated with each subject and storage object untler it control (e.g.,
process, file, segment, device) shall be maintained by the TCB. These labels shall be used as
the basis for mandatory access control decisions. In order to import non-labeled data, the
TCB shall request and receive from an authorized user the security level of the data, and all
such actions shall be auditable by the TCB.

3.3.2 Applicable Features

System V/MLS uses the UNIX group ID to implement its labeling scheme as described in the
system overview (see page 45, 'Labels on System V/MLS'). Group IDs are present in all subject
and object structures. Mandatory access controls are enforced based on these labels as previously
described on page 44, 'Mandatory Access Control'. Non-labeled data which must be imported onto
the system is initially labeled at SYSHI until proper labeling can be done by a system administrator.

3.3.2.1 Labeling on the 630 MTG Terminal

Labeling and the various sub-requirements associated with assuring the existence of trusted labels
for all storage objects a handled by the 630 MTG terminal. There are many operations in which
the 630 MTG terminal is required to enforce the labeling requirements. These fall into two
categories: terminal operations and data manipulation operations. In the case of terminal operations
(e.g., open wirdow, delete window), the 630 MTG terminal communicates with the host computer
via the xt0 port. In the case of data manipulation operations (e.g., cut, paste), the terninal ensures
the integrity of the labels on those window buffers at all times. The 630 MTG ensures the integrity
of human-readable labels attached to each window buffer present on the terminal.

3.3.3 Conclusion

System V/MLS satisfies the BI Labels requirement.

3.4 Label Integrity

3.4.1 Requirement

Sensitivity labels shall accurately represent e,!curity levels of the specific subjects or objects
with which they are associated. When exported by the TCB, sensitivity labels shall accurately
and unambiguously represent the internal labels and shall be associated with the information
being exported.

3.4.2 App!icible Features

Sensitivity labels which are assigned to all subjects and objects are described in the system overview
(see page 45, "Labels on System V/MLS"). The GIDs, which are stored internally in the user area,
point to the actual label which is stored in internal kernel tables. When data files are exported in

- 84 -
Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a B system

System V/MLS they are accompanied by their GIDs. Procedurally, they must also be accompanied
by the /mls/labels mapping of those GIDs into their associated labels. For a discussion of the
integrity of labels on the 630 MTG terminal (see page 74, "Window Labels").

3.4.3 Conclusion

System V/MLS satisfies the BI Label Integrity requirement.

3.5 Exportation of Labeled Information

3.5.1 Requirement

The TOB shall designate each communication channel and I/0 device as either single-level
or multilevel. Any change in this designation shall be done manually and shall be auditable by
the TCB. The TCB shall maintain and be able to audit any change in the current security
level or levels associated with a communication channel or I/0 device.

3.5.2 Applicable Features

Secondary storage devices (such as disk or cartridge tape) on System V/MLS are multilevel. All
other devices except the 630 MTG terminal are single-level. The interface to devices is via an
unambiguously labeled special file located in the /dev SECURED directory. Any changes to the
level of device files (and thus to their associated device) are auditable.

The 630 MTG terminal is treated as a multi-level device corresponding to multiple single-level
pseudodevices. The TCB maintains the clearance range of each terminal port in the data file
/ms/cleardev, all changes to this file are auditable events. Additionally, events which change the
security level associated with a 630 MTG terminal session may be audited.

3.5.3 Conclusion

System V/MLS satisfies the BI Exportation of Labeled Information requiremeLt.

3.6 Exportation to Multilevel Devices

3.6.1 Requirement

When the TCB exports an object to a multilevel I/0 device, the sensitivity label associated
with the object shall also be exported and shall resided on the same physical medium as the
exported information and shall be in the same form (i.e., machine-readable or human-
readable form). When the TCB exports or imports an object over a multilevel
communication channel, the protocol used on that channel shall provide for the unambiguous
pairing between the sensitivity labels and the associated information that is sent or received.

3.6.2 Applicable Features

Multilevel devices are labeled with a maximum and minimum label. Access to multilevel I/O device
files will be restricted to processes that enforce the labeling requirements (e.g. printer daemons,
archiving programs, 630 MTG pseudodevice driver).

The 630 MTG terminal conforms to this requirement by maintaining a virtual terminal connection
which is dedicated to information used for window control and data labeling. Each window on the
630 MTG terminal is displayed with a tamperproof header which contains its mandatory access
control attributes.

- 85 -

Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a B1 system

Data can only be imported/exported to a floppy disk by the system administrator through the
backup or cpio commands. Data files are imported/exported with their GIDs. They must also be
accompanied by the /mis/labels mapping. This is done via an administrative procedure.

3.6.3 Conclusion

System V/MLS satisfies the BI Exportation to Multilevel Devices requirement.

3.7 Exportation to Single-Level Devices

3.7.1 Requirement

Single-level I/0 devices and single-level communication channels are not required to
maintain the sensitivity labels of the information they process. However, the TCB shall
include a mechanism by which the TCB and an authorized user reliable communicate to the
designate the single security level of information imported or exported via single-level
communication channels or I/0 devices.

3.7.2 Applicable Features

Facilities within chpriv, newpriv, and device-dependent functions provide reliable means by which
authorized users may alter the level associated with single-level devices. Devices, including tty
devices, normally reside in the /dev directory. Single level devices, while in use, reside in exactly
one SECURED subdirectory of /dev. A single level device is only visible to a user if the device
resides in the SECURED subdirectory of /dev which corresponds to the user's current operating
level. A user operating as root or in the group SECURED sees the "real" /dev directory as well as
all subdirectories.

The device clearances file, /mls/cleardev, specifies the maximum and minimum permitted labels for
the device. (Actually /mls/cleardev specifies the maximum and minimum labels for the port - but
in a hardwired configuration we can identify the port with the device.) At login the maximum and
minimum for the session are computed from the maximum and minimum of the port and user; this
maximum and minimum are stored in the sessions database and are used by newpriv and chpriv to
determine if the requested device reclassification is permitted.

At login the user's tty device is assigned the user's login label and is placed in the appropriate
SECURED subdirectory of /dev. Any subsequent changes in the label assigned to the tty by the
user must be initiated by a trusted process, newpriv, which re-labels the tty line to reflect the
current label of the user's process, and moves the tty to the appropriate SECURED subdirectory.
Newpriv consults the sessions database to ensure that the requested new operating label is permitted
to both the user and the tty. Every read and write to a tty line is verified to conform to MAC
policy. Reads and writes to /dev/tty are checked for both MAC and DAC.

Chprv can also be used to change the security classification of a single-level device. Only a user
operating with a real UID of root will be permitted to use chpriv to change the security classification
of a character device.

Lpsched is the process which actually transmits files to the printer. Before sending the file, lpsched
executes newpriv to change the classification of the printer device to that of the file to be printed.
The labels of the printer and the file are identical for the duration of the print job. At the
conclusion of the print job the printer is reclassified to SYSTEM.

- 86-
Revision 10.5 eval Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a B1 system

3.7.3 Conclusion

System V/MLS satisfies the B1 Exportation to Single-Level Devices req '-ement.

3.8 Labeling Human-Readable Output

3.8.1 Requirement

The ADP system shall be able to specify the printable label names associated uith ezported
sensitivity labels. The TCB shall mark the beginning and end of all human-readable, paged,
hardcopy output (e.g., line printer output) with human-readable sensitivity labels that
properly"5 represent the sensitivity of the output. The TOB shall, by default, mark the top
and bottom on each page of human-readable, paged, hardcopy output (e.g., line printer
output) with human-readable sensitivity labels that properly represent the overall sensitivity
of the information on the page. The TCB shall, by default and in an appropriate manner,
mark other forms of human-readable output (e.g., maps, graphics) with human-readable
sensitivity labels that properly represent the sensitivity of the output. Any override of these
marking defaults shall be auditable by the TCB.

3.8.2 Apj'Bcable Features

System V/I iLS is capable of providing human-readable output in three ways: line printer output via
the Ip command; displayed in a window on the 630 MTG terminal; and displayed on a 'dumb'
terminal, such as the AT&T Teletype 4425 or 605 terminals.

In the event that the output is provided by the use of the Ip command, the lp subsystem ensures
that banner pages are printed for each job which display the current label of the user. A job may
contain several files at different levels from a single user. The label on the banner and trailer pages
of the whole print job will be the current label of the user and will therefore always dominate the
label of any file contained in the job. Additionally, top and bottom page labels are provided by
default; however, these may be overridden by the user. In the event that these are overridden, the
act of overriding them is auditable. The top and bottom labels are not printed if the label is longer
than 80 characters. In this case the top and bottom labels are replaced by the character string

** security label for privilege <priv name> is too long to print **
where <priv name> is the name of the user's current operating privilege. This label replacement is
auditable.

The 630 MTG terminal labels all windows with their sensitivity label. The label display is
dependent upon the sie of the window. The hierarchical portion of the label is always displayed, as
is as much of the non-hierarchical portion of the label as possible. In the event that the non-
hierarchical part of the label is too long to be displayed, the 630 MTG flags the condition in the
user's display, and provides an option which allows a user to display the entire label.

By default, the user's current level and privilege are defined as each user's prompt in /etc/profile.
However, since users may select their own prompts, they may choose not to display their current

15. The hierarchical classification component in human-readable sensitivity labels shall be equal to the greatest hierarchical
classification of any information in the output that the labels refer to; the non-hierarchical category component shall
include all of the non-hierarchical categories of the information in the output the labels refer to, but no other non-
hierarchical categories.

- 87-
Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report ATT System V/WLS
Evaluation as a Bl system

level and privilege at all times. Also, if the default PSI prompt, as defined in /etc/profile would be
more than 240 characters long, it is replaced by '<label too long> privname $' where privname is
the name of the user's current operating privilege. For these reasons, System V/MLS provides a
mechanism to display the user's current operating privilege at any time.

3.8.3 Conclusion

System V/MLS satisfies the Bi Labeling Human-Readable Output requirement.

3.9 Subject Sensitivity Labels

3.9.1 Requirement

The TOB shall immediately notify a terminal user of each change in the security level
associated with that user during an interactive session. A terminal user shall be able to query
the TCB as desired for a display of the subject's complete sensitivity label.

3.9.2 Applicable Features

Terminal users may change their current operating privilege (mandatory label, discretionary group
pair) during an interactive session via the neuipriv or exit (or CNTL-D) commands. These
commands print to the screen the new label of the user. In addition, the user's default prompt string
is used to store the user's current operating label; this prompt can be modified by the user to
contain any string. When newpriv or exit is invoked from a host connected 630 MTG terminal, the
new label replaces the old label in the label bar for that window. Terminal users can request that
the TCB display their current sensitivity label with the 'labels -u' command. These mechanisms are
explained in detail on page 51, "Changing Subject Sensitivity Label Interactively' and page 74,
'Window Labels'.

3.9.3 Conclusion

System V/MLS satisfies's the B2 Subject Sensitivity Labels requirement.

3.10 Device Labels

3.10.1 Requirement

The TCB shall support the assignment of minimum and maximum security levels to all
attached physical devices. These security levels shall be used by the TCB to enforce
constraints imposed by the physical environment in which the devices are located.

3.10.2 Applicable Features

By invoking the mkdevclr command, the system administrator can enter into the /m/cleardev file
the maximum and minimum levels at which a device may operate. Thereafter, the device is
restricted to operate within that range of levels. Maximum and minimum levels may be assigned to
all devices in the evaluated configuration.

16. Although System VJLS satisfies this requirement at the B2 level, it does not satisfy the assurance requirements above
its rated level.

- 88 -

Revision 10.5 eval Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a Bi system

3.10.3 Conclusion

System V/MLS satisfies 17 the B2 Device Labels requirement.

3.11 Mandatory Access Control

3.11.1 Requirement

The TCB shall enforce a mandatory access control policy over all subjects and storage objects
under its control (e.g., processes, files, segments, devices). These subjects and objects shall
be assigned sensitivity labels that are a combination of hierarchical classification levels and
non-hierarchical categories, and the labels shall be wsed as the basis for mandatory access
control decisions. The TCB shall be able to support two or more such security levels. The
following requirements sall hold for all accesses between subjects and objects controlled by
the TCB: A subject can read an object only if the hierarchical classification in the subject's
security level is greater than or equal to the hierarchical classification in the object's security
level and the non-hierarchical categories in the subject's security level include all the non-
hierarchical categories in the object's security level. A subject can write an object only if the
hierarchical classification in the subject's security level is less that or equal to the
hierarchical classification in the object's security level and all the non-hierarchical categories
in the subject's security level are included in the non-hierarchical categories in the object's
security level. Identification and authentication data shall be used by the TCB to
authenticate the user's identity and to ensure that the security level and authorization of
subjects external to the TCB that may be created to act on the behalf of the individual user
are dominated by the clearance and authorization of that user.

3.11.2 Applicable Features

System V/MLS enforces a mandatory security policy over all subjects and storage objects. This
security policy maintains protection of objects such that no unauthorized subject is permitted to
read or write objects (in this context, unauthorized means that the subject is executing at an
inappropriate security level).

The mandatory security policy enforced by System V/MLS relies upon two basic relationships
between the labels associated with subjects and objects - dominance and equivalence:

Label X dominates (>=) label Y when the hierarchical portion of label X is greater
than or equal to the hierarchical portion of label Y,
and label X contains at least all of the non-
hierarchical categories that are contained in label Y.

Label X is equivalent (==) to label Y when the hierarchical portion of label X is identical
to the hierarchical portion of label Y, and the set of
non-hierarchical categories contained in label X is
identical to the set of non-hierarchical categories
contained in label Y.

17. Although System V/MLS satisfies this requirement at the B2 level, it does not satisfy the assurance requirements above
Its rated level.

- 89-
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report ATkT System V/MIS
Evaluation as a BI system

The mandatory controls placed upon the System V/MLS objects are as follows:

- Files, directories

Read Access: Subject >= Object

Execute Access: Subject >= Object

Write Access: Subject == Object

- Named pipes, unnamed pipes

Read Access: Subject >= Object

Write Access: Subject == Object

- Processes signaling other processes

Read Access: Not Applicable

Write Access: Subject (sending proc) -= Object (receiving proc)

- Message queues, semaphores, shared memory

Read Access: Subject >= Object

Write Access: Subject == Object

Identification and authentication data is determined at login and stored in /mis/sessions. When a
user invokes a program, including SUID and SGID programs, to act on his or her behalf, the exec
system call ensures that the sensitivity level of the process dominates the sensitivity level of the
program. In addition, the invoking process's sensitivity level is preserved.

3.11.2.1 MAC and the 630 MTG Terminal

The portion of the TCB which runs in the 630 MTG terminal enforces System V/MLS mandatory
access policy on the 630 MTG. The implementation of this feature is discussed on page 77, "Cut and
Paste'.

3.11.3 Conchsion

System V/MLS satisfies the B1 Mandatory Access Control requirement.

3.12 Identification and Authentication

3.12.1 Requirement

The TCB shall require users to identify themselves to it before beginning to perform any
other actions that the TCB is expected to mediate. Furthermore, the TCB shall maintain
authentication data that includes information for verifying the identity of individual users
(e.g., passwords) as well as information for determining the clearance and authorizations of
individual users. This data shall be used by the TCB to authenticated the user's identity and
to ensure that the security level and authorizations of subjects external to the TCB that may
be created to act on behalf of the individual user are dominated by the clearance and
authorization of that user. The TCB shall protect authentication data so that it cannot be
accessed by any unauthorized user. The TCB shall be able to enforce individual
accountability by providing the capability to uniquely identify each individual ADP system
user. The TCB shall also provide the capability of associating this identity with all auditable

-go-
Revision 10.5 eval Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a Bi system

actions taken by that individual.

3.12.2 Applicable Features

System V/MLS requires all users, including system operators, to identify and authenticate
themselves before they are allowed to access system resources. Users enter login IDs and passwords
to identify and authenticate themselves to the system. When a system administrator adds a user
account, the TCB ensures that unique login IDs are provided on an individual basis.

Only system administrators may gain access to the identification and authentication information
because the TCB maintains this data within the protected mls directory. The following files contain
identification and authentication data: /mls/passwd, /mls/group. In addition to storing the
passwords in a file inaccessible to nonprivileged users, System V/MLS encrypts the passwords.

To obtain superuser privileges, administrators must first login at designated terminals as non-
privileged users. These terminal ports have a minimum device label which is SYSTEM level, which
is less than the unprivileged users' minimum. In addition, administrators must enter the su
command and provide the superuser password in order to acquire administrative capabilities.

3.12.2.1 Identification and Authentication and the 630 M'G Terminal

After the user is identified and authenticated by the host, the terminal port is identified in the
/mls/cleardev file as being connected to a 630 MTG terminal. Next, firmware modifications are
downloaded, and layers is invoked. After the trusted channel 0 has been established, one or more
additional channels are created and the user is allowed to operate on the terminal. Any windows
which are created by the user are constrained by the system MAC policy explained on page 44,
'Mandatory Access Control'.

3.12.3 Conclusion

System V/MLS satisfies the BI Identification and Authentication requirement.

3.13 Trusted Path

3.13.1 Requirement

The TCB shall support a trusted communication path between itself and users for initial
login and authentication. Communications via this path shall be initiated ezclusively by a
user.

3.13.2 Applicable Features

System V/MLS supports a trusted communications path for initial user login to the system for all
terminal types in the evaluated configuration. In all cases, the user is advised to power-cycle the
terminal to ensure that the trusted path is established for the login identification and authentication
option of changing their password via this trusted path mechanism, through the use of an argument
to the login command. Users should be encouraged to change their passwords through this interface
rather than by use of the passuid command.

3.13.3 Conclusion

System V/MLS satisfies s the B2 Trusted Path requirement.

-91-
Revision 10.5 eval_B1.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MIS
Evaluation as a BI system

3.14 Audit

3.14.1 Requirement

The TCB shall be able to create, maintain, and protect from modification or unauthorized
access or destruction an audit trail of accesses to the objects it protects. The audit data shall
be protected by the TOB so that read access to it is limited to those who are authorized for
audit data. The TOB shall be able to record the following types of events: use of
identification and authentication mechanisms, introduction of objects into a user's address
space (e.g., file open, program initiation), deletion of objects, actions taken by computer
operators and system administrators and/or system security officers, and other security
relevant events. The TCB shall also be able to audit any override of human-readable output
markings. For each recorded event, the audit record shall identify: date and time of the
event, user, type of event, and success or failure of the event. For
identification/authentication events the origin of request (e.g., terminal ID) shall be included
in the audit record. For events that introduce an object into a user's address space and for
object deletion events the audit record shall include the name of the object and the object's
security level. The ADP system administrator shall be able to selectively audit the actions of
any one or more users based on individual identity and/or object security level.

3.14.2 Applicable Features

The audit trail is a file consisting of a header and audit records. The header provides general
information: identity of the system this audit trail was generated on and the time/date the system
was brought into multi-user state. The header information also provides a user name map, a group
name map, a label name map, a terminal name map, and a filesystem map. These maps provide a
translation between internal and human-readable names. In System V/MLS the audit trail is
protected at SYSHI.

Each audit record has 2 parts: a header followed by a data block specific for that auditable event.
Audit records are sequenced so that missing records can be detected. The header consists of the
channel number, the number of bytes in the record, the process ID of the process writing the record,
and a time stamp. The structure of each audit record is dependent on the type of event being
recorded.

Currently 23 channels are used for the following kernel probe points. Subchannels which record
kernel functions are indicated by indenting them beneath their channel.

sataccs: open for read/write access to a filesystem object granted

sataccf: open for read/write access to a filesystem object denied

sat chown: modification of the owner of a file

sat chgrp: modification of the discretionary group of a file

sat chmod: modification of the mode bits of a file system object

18. Although System V/MLS satisfies this requirement at the B2 level, it does not satisfy the assurance requirements above
its rated level.

- 92 -

Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a Bl system

sat clk: reset of system clock

satstartup: record current time

satreclas: reclassification of file

satexece: successful/failed execs

satexit: exit status of process

satfork: process fork

satipcaccs: successful open for read/write access of IPC object

sat_ipcaccf: failed open attempts for read/write access to IPC objects

sat_ipccreat: creation of an IPC object

satipcchown: change of the owner of an IPC object

satipcchgrp: change of the discretionary group of an IPC object

sat ipcchmod: change of the mode bits of an IPC object

sat ipcreclas: reclassification of IPC object

sat-ipcrm: removal of an IPC object

sat-kill: all signals sent by privileged processes

satlink: new links to existing files

sat mknd: creation of file

sat-mount: mount of local filesystem

satsunmount: unmount of filesystem

sat_pipe: creation of unnamed pipes

satserr: system calls that fail

sat setuid: modification of effective UIID of a process

satsetgid: modification of effective GIlD of a process

sat uli: data written to sat devices

sat ulrm: removal of file or directory

There are 14 user level audit trail probes:

mkuser: adding a new user

rmuser: removal of a user

mklbl: creation of a new label

mkgrp: addition of a new group or new privilege

rmpriv: removal of a group or privilege

- 93 -

Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MS
Evaluation as a BI system

maxclear: changes in a user's clearance

addpriv: addition of new users to a group / privilege

delpriv: removal of users from a group / privilege

modpriv: record rename of privilege or transfer of ownership.

5310: suppression of labels on 5310 printer output.

mount: the inode-name map of the filesystem being mounted

passwd: records the change of a user's password

mkdevclr: addition of a new device clearance

rmdevclr: removal of a device clearance

login: unsuccessful login attempts19

layers: records successful and failed reclassifications on 630 MTG.

System V/MLS contains an audit trail formatter, satfmt, which formats the records in the audit
trail in one of 3 formats: raw, verbose and sensitive. Raw mode outputs the audit record
information completely in numeric characters in decimal rather than hex. Verbose mode converts all
numeric references to symbolic names wherever possible. Sensitive mode outputs only those events
defined as security sensitive and which are of special interest to the security administrator (e.g.,
failed access attempts).

Satfmt maintains an internal name map data structure for each object defined on the system,
including complete name maps for all mounted filesystems. This allows for path resolution to be
determined quickly, without having to reference the actual file system. In addition, when the object
has multiple links all path names are listed in verbose output. Also, satfrnt with the -N option is the
post-selection tool for choosing actions of a particular individual. System Administrators may
selectively audit based on the object security level by using grep on the audit trail fide. Instructions
for using grep in this manner exist in the TFM.

When the currently active audit trail file becomes 80% full, a warning message is sent to the system
console. When the current audit file fills, the satsave daemon switches to the next audit file,
wrapping around to the first file when the last file is full. If the ncxt audit trail file is not empty,
the system will go into single user mode.

3.14.2.1 Auditing User Actions On The 630 MTG Terminal

All host connected processes are subject to auditing on the host. Terminal operations (e.g., create a
window) are implicitly audited. The terminal operations which manipulate data between processes
(e.g., cut/paste) which results in a declassification or the operation fails are audited as a ULI record
generated by lagers. Successful terminal operations are not audited. Both of these justifications and
descriptions can be found on page 78, 'Auditing on the 630 MTG'. Logins on a 630 MTG terminal
device are auditable, as are all other logins.

19. successful logins are audited &s combination of several kernel probe points (e.g. sat exece, satfork)

- 94 -
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a B system

3.14.3 Conclusion

System V/MLS satisfies the Bi Audit requirement.

3.15 System Architecture

3.15.1 Requirement

The TOB shall maintain a domain for its own execution that protects it from external
interference or tampering (e.g., by modification of its code or data structures). Resources
controlled by the TCB may be a defined subset of subjects and objects in the ADP system.
The TCB shall maintain process isolation through the provision of distinct address spaces
under its control. The TCB shall isolate the resources to be protected so that they are subject
to the access control and auditing requirements.

3.15.2 Applicable Features

The System V/MLS TCB, which includes the 630 MTG terminal as part of the evaluated
configuration, meets the system architecture requirement by maintaining a domain for its own
execution and maintaining process isolation, both in the host and in the terminal. The host system
provides these features via both hardware memory management and kernel data structure
organisation. As discussed previously, the system hardware supports both a kernel and user
domain, with access to these memory spaces enforced by the hardware. System data and code files
are protected from modification by both mandatory and discretionary policy, ensuring that the
system is not corrupted. The 630 MTG terminal does not provide hardware memory management;
however, the same functionality is achieved by ensuring that all code which runs on the terminal is
trusted. This ensures that the execution domain of the 630 MTG terminal is inviolate. Process
isolation is a topic which is not applicable to the 630 MTG terminal, in that the terminal executes
only one process at a time, and the processes which may be executed are all trusted.

All objects and resources which are supported by System V/MLS in its evaluated configuration are
defined to the TCB and exist under its protection. All elements of the system are protected by the
System V/MLS security policy.

3.15.3 CQncluslon

System V/MLS satisfies the BI System Architecture requirement.

3.16 System Integrity

3.1&1 Requremet

Hardware and/or software features shall be provided that can be used to periodically validate
the correct operation of the on-site hardware and firmware elements of the TCB.

3.16.2 Applicable Features

A complete set of stem integrity tests are shipped with the System V/MLS system. The test
facility i referred to as the Diagnostic Monitor (DGMON), and is shipped as standard equipment
with each 3B2 computer. The test facility is a comprehensive one, and as such requires that the
system be brought down to firmware mode before the tests may be run.

The DGMON tests exercise the CPU (including the privileged instructions), the system board, the
memory, the Vcache, and the peripheral device controllers. The tests and instructions for their
operation are discussed in a manual which is available to system administrators. This manual, the

-95-

Revision 10.5 evl_BI.mm (Revised 6/27/91)

Final Evaluation Report ATkT System V/N8
Evaluation as a BI system

AT& T 3BB Computer Off-Line Diagnostics Manual, provides a good description of each test, what it
covers, and how to use it.

3.16.3 Concluslon

System V/MLS satisfies the Bi System Integrity requirement.

3.17 Security Testing

2.17.1 Requirement

The security mechanisms of the ADP system shall be tested and found to work as claimed in
the system documentation. A team of individuals who thoroughly understand the specific
implementation of the TOB shall subject its design documentation, source code, and object
code to thorough analysis and testing. Their objectives shall be: to uncover all design and
implementation flaws that would permit a subject ezternal to the TCB to read, change, or
delete data normally denied under the mandatory or discretionary security policy enforced by
the TCB; as well as to assure that no subject (without authorization to do so) is able to cause
the TOB to enter a state such that it is unable to respond to communications initiated by
other users. All discovered flaws shall be removed or neutralized and the TOB retested to
demonstrate that they have been eliminated and that new flaws have not been introduced.

3.17.2 Applicable Features

3.17.2.1 Overview of Vendor Test Suite

The complete AT&T System V/MLS test suite consists of three distinct parts: the security test
suite, the functional tests, and the 630 MTG terminal test suite. Although there are several
instances where security tests and functional tests may overlap, AT&T felt it was important to
separate the two and perform each set independent of the other. The 630 MTG terminal tests are
also separated into both security and functional tests and are discussed later.

The System V/MLS security tests are aimed at ensuring that all B1 security requirements as stated
in the Department of Defense Trusted Computer System Evaluation Criteria are met. These tests
are broken into the following six sections of the requirements: discretionary access control, object
reuse, labeling, mandatory access control, identification and authentication, and audit.

The functional tests ensure that the System V/MLS software functions correctly as described in the
system documentation. These tests are broken into the following sections:

1. Section (1) System V User and Administrative Command Tests

2. Section (1) System V/MLS Security Enhanced or New User & Administrative Command
Tests

3. Section (2) System V System Call Tests

4. Section (2S) System V/MLS Security Enhanced or New System Call Tests

5. Long Labels Tests

Testing of the trusted processes is included in the functional testing.

The 630 MTG terminal has its own test plan and procedures to test its functional and security
properties. The underlying philosophy of the 630 MTG tests parallels the philosophy used by the
System V/MLS tests; namely, that functional tests are constructed for functions advertised in the

-96.
Revision 10.5 evalBi.mm (Revised 8/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a BI system

User's Guide and security tests are constructed from TCSEC requirements. The System V/MLS
tests are first run on the 630 MTG to ensure that there is nothing specific to the 630 MTG terminal
that affects the system. The goal of the 630 MTG test plan is to assure that System V/MLS
security policy is enforced when a user is using the terminal. The 630 MTG functional and security
tests are performed as described below.

Functional testing for the 630 MTG consists of tests for new or modified commands that are
executed on the host and tests for 630 MTG specific functionality available through mouse menu
interaction. Terminal commands, or mouse selections, are each tested manually. These tests involve
such functions as bringing window top and current, putting window into local edit mode,
interwindow data moves, creating local windows, creating new windows, moving/reshaping windows,
showing a window's label, editing the programmable function keys, scrolling and terminal reset.

Security testing for the 630 MTG consists of tests which correspond to those TCSEC requirements
involving the 630 MTG. These tests first cause certain operations to occur and then observe the
effects or lack of effects of these operations. No extra testing is performed for DAC since the 630
MTG introduces no additional discretionary access controls.

3.17.2.2 Additional User Testing

In addition to formal testing using AT&T's security and functional tests, System V/MLS was also
exercised on a daily basis as AT&T developers and testers used the system for both general
computing and further development efforts. Through this regular usage of the system, AT&T gained
more assurance of the validity of the system. In addition, as new features were added to System
V/MLS, new tests were added to the original test suites, and some original tests were modified as
necessary to exercise this current system.

3.17.2.3 Vendor Security Analyst (VSA) Testing

AT&T's Vendor Security Analysts (VSA) and test team conducted the System V/MLS testing on
AT&T 3B2/500 and 3B2/600 computers owned by AT&T and located at the AT&T site in
Whippany, NJ. The test team executed all of AT&T's automated and manual tests. The security
test suite consists of 4 sets of automated tests and 4 sets of manual tests. The functional tests
consist of 225 automated and 84 manual tests. The 630 Test Suite consists of 120 manual tests.

All tests were run using Release 1.2.0 of System V/MLS integrated with Release 3.1.1 of UNIX
System V. The evaluated software configuration consists of Release 1.2.0 of System V/MLS, which
is Release 1.1.2 with the inclusion of fixes and enhancements made during the first Ratings
Maintenance Phase (RAMP) integrated with UNIX System V Release 3.1.1. The hardware
configuration of computers on which the tests were run is as follows:

1. AT&T 3B2/500 which includes:

a. WE 32100 microprocessor and 18 MHz clock - CM518A

b. WE 32101 Memory Management Unit

c. WE 32106 Math Accelerator Unit (MAU)

d. Virtual Cache

e. Two 4 Mbyte ECC RAM - CM523A

f. 147 Mbyte hard disk (Control Data Corp.) - KS-23371,L17

- 97 -

Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MIS
Evaluation an a B1 system

g. 720 Kbyte floppy disk drive - KS-23114,L4

h. SCSI Host Adaptor Card - CM195W

i. SCSI 60 Mbyte (TM/60S) cartridge tape drive - KS-23417,L2

j. Enhanced Ports (EPORTS) Board - CM195Y

k. AT&T 4425 Terminal as the System Console

1. AT&T 4425 Terminal hardwired to EPORTS board

m. AT&T 630 MTG terminal hardwired to EPORTS board

n. AT&T 5310 Dot Matrix Printer hardwired to the CONTTY port

2. AT&T 3B2/600 which includes:

a. WE 32100 microprocessor and 18 MHz clock - CM518A

b. WE 32101 Memory Management Unit

c. WE 32106 Math Accelerator Unit (MAU)

d. Virtual Cache

e. Two 4 Mbyte ECC RAM - CM523A

f. 147 Mbyte hard disk (Control Data Corp.) - KS-23371,L17

g. 720 Kbyte floppy disk drive - KS-23114,L4

h. SCSI Host Adaptor Card - CM195W

i. SCSI 60 Mbyte (TM/60S) cartridge tape drive - KS-23417,L2

j. Enhanced Ports (EPORTS) Board - CM195Y

k. AT&T 605 Terminal as the System Console

1. AT&T 4425 Terminal hardwired to EPORTS board

m. AT&T 630 MTG terminal hardwired to EPORTS board

n. AT&T 5310 Dot Matrix Printer hardwired to the CONTTY port

3.17.2.4 Problems Uncovered During System V/MALS Testing

The following problems were uncovered in the software as a result of the testing effort:

1. The PFKeys of the 63OMTG, when used in the two-host configuration, were not cleared when
one host was exited and logged back in.

2. The 63OMTG terminal failed to sanitize itself when both host connections were terminated by
pulling the terminal connectors from the main and auxiliary ports.

AT&T made software fixes for each of the problems identified above, and the final load of Release
1.2.0 contains these fixes. This final load was retested to verify that the problems were corrected

and that no additional problems were introduced during the process of making the requisite fixes.
The same computer configurations were used for the retesting activity.

-98-
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a BI system

3.17.3 Conclusion

System V/MLS satisfies the B1 System Testing requirement.

3.18 Design Specification and Verification

3.18.1 Requirement

A formal or informal model of the security policy supported by the TCB shall be maintained
over the life cycle of the ADP system and demonstrated to be consistent with its azioms.

3.18.2 Applicable Features

System V/MLS implements a modified version of the Bell and LaPadula security model to enforce
mandatory security. The UNIX System V/MLS implementation is more restrictive than the Bell
and LaPadula model in that write access to an object is only permitted when the subject and object
have identical security labels. The System V/MLS security policy is maintained throughout the
system including the 630 MTG terminal.

3.18.3 Conclusion

System V/MLS satisfies the BI Design Specification and Verification requirement.

3.19 Security Features User's Guide

3.19.1 Requirement

A single summary, chapter or manual in user documentation shall describe the protection
mechanisms provided by the TCB, guidelines on their use, and how they interact with one
another.

3.19.2 Applicable Features

The System V/MLS User's Guide and Reference Manual, 680 MTG User's Guide, 8B2 UNIX
System V Programmer's Reference Manual, and the UNIX System V User's Guide collectively meet
the Security Features User's Guide requirements. These manuals are intended for users and provide
descriptions of the functions of System V/MLS.

The System V/MLS User's Guide and the 680 MTG User's Guide provide descriptions of and
guidelines for the use of the protection mechanisms provided by the TCB. They are structured as
follows:

3.19.2.1 System V/MLS User's Guide and Reference Manual

This manual consists of the following three sections: System V/MLS Policy Definition, System
V/MLS Tutorial, and Manual Pages for System V/MLS Commands.

Section I Defines the System V/MLS security policy, explains security labels,
discretionary access control, and auditing.

Section II Describes the features and general use of System V/MLS (e.g., login
procedures, creating directories, making privileges).

Section III Contains the manual pages for System V/MLS (includes new and
modified commands).

-99-
Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/NLS
Evaluation as a BI system

3.19.2.2 630 MTG User's Guide

This manual describes the modifications made to the 630 MTG in order to allow it to be used within
a multi-level secure computer system. Trustworthy security labels on windows, terminal firmware
verification on login, and terminal memory clearing on logout are added security relevant features
for the 630 MTG. In addition, this manual explains the 630 MTG features which have been
disabled to prevent using the terminal to circumvent security.

3.19.3 Conclusion

System V/MLS satisfies the BI Security Features User's Guide requirement.

3.20 Trusted Facility Manual

3.20.1 Requirement

A manual addressed to the ADP system administrator shall present cautions about functions
and privileges that should be controlled when running a secure facility. Tie procedures for
examining and maintaining the audit files as well as the detailed audit record structure for
each type of audit event shall be given. The manual shall describe the operator and
administrator functions related to security, to include changing the security characteristics of
a user. It shall provide guidelines on the consistent and effective use of the protection
features of the system, how they interact, how to securely generate a new TCB, and facility
procedures, warnings, and privileges that need to be controlled in order to operated the
facility in a secure manner.

3.20.2 Applicable Features

The System V/MLS Trusted Facility Manual, User's Guide and Reference Manua System V User's
Guide, SBf System V Programmer's Reference Manual, SB2 System V System Administration
Utilities Guide, 630 MTG User's Guide, 630/MLS Trusted Facility Manual-MultiLevel Secure
Window Management, and the 630 MTG User's Manual are intended for use by system operators
and administrators. These manuals are used to guide an administrator or operator in the correct
way to operate System V/MLS in a secure manner, and collectively meet the Trusted Facility
Manual requirements.

3.20.2.1 System V/MLS Trusted Facility Manual

This manual consists of sections which describe the procedures for operating the system in a secure
manner.

-100-
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report ATT System V/MLS
Evaluation as a B1 system

Section I Introduces the types of system officers and explains how to use this
guide.

Section II Describes the threats to information security as well as the measures
taken to protect against these threats. Both internal and external
threats are explained.

Section III Provides a description of labeling, mandatory access control,
discretionary access control, identification and authentication, trusted
path, auditing, and object reuse.

Section IV Explains the following: additional accountability, default path, Bourne
shell, physical security, maximum number of file descriptors, and
mandatory access control.

Section V Explains system start-up and shutdown; mounting, unmounting, and
storing labeled data; backing up and restoring fdes; maintaining the
audit trail; and distributing labeled hardcopy.

Section VI Describes the following: setting the system time and date; managing
user accounts; installing and removing software; maintaining correct
permissions; and granting special authorisations.

Section VII Explains security administrator roles: administrating clearance
information; securing directories; reclassifying information; reviewing
audit trail data; and installing and uninstalling System V/MLS.

Section VIII Includes appendices of setuid and setgid files that exist after System
V/MLS is installed and the TCB listing.

3.20.2.2 630/MLS Trusted Facility Manual

This manual describes logical and physical connections to the host, downloading software, 630
installation, DAC, MAC, and object reuse. In addition, this manual describes accountability, and
trusted communications.

3.20.3 Conclusion

System V/MLS satisfies the BI Trusted Facility Manual requirement.

3.21 Test Documentation

3.21.1 Requhrement

The system developer shall provide to the evaluators a document that describes the test plan,
test procedures that show how the security mechanisms were tested, and results of the
security mechanisms' functional testing.

3.21.2 Applicable Features

The System V/MLS Test Plan describes the testing methodology employed by the testers of the
System V/MLS system. The System V/MLS test plan outlines their specific testing approach, which
consists of features testing of all mechanisms which exist to satisfy Criteria requirements. The tests
are largely automated, with the exception of tests for identification and authentication, and other
areas in which manual intervention is required.

- 101 -

Revision 10.5 eval_Bl.mm (Revised 6/27/91)

Final Evaluation Report, AT&T System V/MLS
Evaluation as a Bl system

3.21.3 Conclusion

System V/MLS satisfies the BI Test Documentation requirement.

3.22 Design Documentation

3.22.1 Requirement

Documentation shall be available that provides a description of the manufacturer's philosophy
of protection and an explanation of how this philosophy is translated into the TOB. If the
TOB is composed of distinct modules, the interfaces between these modules shall be
described. An informal or formal description of the security policy model enforced by the
TCB shall be available and an explanation provided to show that it is sufficient to enforce the
security policy. The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

3.22.2 Applicable Features

There is no one document which purports to act as complete design documentation for System
V/MLS. Instead, there exist several distinct documents, each detailing the operation of some subset

of the entire system. The documentation for the underlying UNIX system upon which System
V/MLS is based consists largely of Maurice Bach's The Design of the UNIX Operating System, as
well as the course notes from several AT&T UNIX system internals classes.

The system developers have also written a series of relatively detailed papers which specifically
discuss the operation of, and philosophy underlying, System V/MLS. Finally, some inspection of
the system source code has shown that it sufficies as documentation for less complex trusted
processes. AT&T developers have produced more detailed documentation in those cases in which
the functionality of the trusted process was not readily discernable from a simple inspection of the

commented code and cross references.

3.22.3 Conclusion

System V/MLS satisfies the Bi Design Documentation requirement.

3.23 RAMP

3.23.1 Requirement

All changes to the TOB, and its supporting evaluation evidence, shall be identified and
analyxed for security relevant effects. Procedures shall be in place to ensure, for each
change, that all design documentation, user documentation, source code, and test fixtures are
updated appropriately. A Rating Maintenance Plan (RMPlan) shall be provided which
describes the mechanisms, procedures, and tools which will be used in support of the above
activities. A convincing argument shall be given to show the described mechanisms,
procedures, and tools are sufficient to address all changes to the TOB, including new
features, bug fizes, and changes to satisfy evolving criteria requirements.

3.23.2 Applicable Features

All changes made to the System V/MLS product including hardware, software and documentation
are initiated through a configuration control process. This configuration control process ensures that
all elements (e.g., code, tests, documents) effected by a given change are appropriately modified and
analysed. This configuration control process (all mechanisms, procedures, and tools) is described in
the Rating Maintenance Plan for System V/MLS (RMPlan).

- 102-

Revision 10.5 eval Bl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/MLS
Evaluation as a Bi system

The configuration control process outlined in the System V/MLS RMPlan was applied to all changes
made to System V/MLS Release 1.1.2 to produce System V/MLS Release 1.2.0. RAMP audits were
conducted by AT&T and RAMP Audit Reviews were conducted by the NCSC to ensure that the
process was functioning properly. All evidence of the changes was recorded in the Rating
Maintenance Report for System V/MLS Release 1.2.0.

3.23.3 Conclusion

System V/MLS satisfies the RAMP requirement.

-103-
Revision 10.5 evalBl.mm (Revised 6/27/91)

Final Evaluation Report AT&T System V/WIL
Evaluator' s Comments

4. Evaluator's Connents

The evaluation team found AT&T System V/MLS to be a flexible general purpose operating system
when run in its evaluated configuration. During the course of working with the system, the tean
developed opinions about some of the system's design characteristics and features. The following are
several of the team's opinions about System V/MLS.

" System V/MLS is unique among systems evaluated by the National Computer Security Center
to date in that it allows use of a windowing terminal (the 630 MTG), which is capable of
processing information of differing sensitivity levels simultaneously. The team found this to be
an extremely useful and convenient feature. In addition to the 630 MTG terminal's ability to
protect information at differing sensitivity labels is the terminal's intrinsic 'smart" terminal
functionality (e.g. line re-entry, 'cut and paste' capabilities, programmable function keys), all of
which operate within the boundaries defined by the System V/MLS security policy.

" If the superuser creates an object, the file's mandatory access control label is NOT derived from
the source of the data. Instead, the file is labeled at SYSTEM level, the lowest mandatory access
control label supported by the system. The superuser must then explicitly reclassify the object
to the appropriate sensitivity label. For example, if the superuser wishes to concatenate two or
more audit trail files together in order to produce a third file containing all of the audit data
from a given day, then the resulting file, a derivative of several files with the mandatory access
control label SYSHI, will be labeled as SYSTEM level. Although System V/MLS provides a
warning about this to the administrator when the su command is successfully invoked, the team
feels that undue care must be taken by system administrators in order to maintain the
confidentiality of information which they may access in the course of their duties. It should be
noted though that discretionary access control is still in place. The default umask setting is for
owner access only.

" The 3B2/500, due to the design of its system board and the way that board is fitted into its
chassis, has two separate console ports. It is important that only the console port on the back of
the machine be used.

* In the event that there is no entry for a terminal device in the /mls/cleardev file, then the
clearance range of the device is from SYSTEM level to SYSHI - that is, the entire range of labels
supported on the machine. The team feels that this is inappropriate, and that only devices with
valid /mns/cleardev entries should be allowed any access to the system. System V/MLS does,
however, send a message to the system console each time a user logs into the system from a
device which has no entry in the /mis/cleardev file. Additionally it should be noted that a user's
operation on a terminal is still limited to that user's clearance range.

" The team feels that it is important to note that System V/MLS loses NO audit data when the
system audit log overflows. In this case, the buffer containing the audit data is saved to a file
before the system stops processing user programs. Some catastrophic failures, such as a power
failure or system panic, may cause up to one buffer of audit data to be lost, and buffer size may
be selected such that this amount of data may be made to be the size of one audit record.

* The system administrator responsible for reviewing the audit data should note that the satfmt
command option " S , which selects "sensitive" mode output, will only inform the user about
those events which the vendor of System V/MLS has defined as 'sensitive." These events
exclude several occurrences which a prudent system administrator may find to be security-
relevant. The team recommends the use of the "-V" option, which selects *verbose" output. In

-104-
Revision 10.2 eval com.mm (Revised 5/24/91)

Final Evaluation Report AT&T System V/MIS
Evaluator' s Comments

verbose mode, all of the audit data is reported to the administrator, who can then review it for
events which may be considered to be of particular relevance to their installation. Verbose mode
is the default option for eatfmt.

* System V/MLS does support a trusted communications path at login time (and, through an
argument to the login command, it supports a trusted path for password change, as well). This
trusted path mechanism is simple, but effective; it is simply good security practice for users to
power off their terminals at the end of their login sessions, and this practice will automatically
invoke the System V/MLS trusted path mechanism.

" To provide discretionary access to the level of a single user, System V/MLS uses the traditional
UNIX mechanism of protection bits for the file's owner, group, and other. The inconvenience of
this mechanism in excluding single users, needing to constantly modify groups as new users gain
access to the system or users are deleted from the system or group, as well as the impossibility of
giving different users different access rights to an object have been thoroughly discussed in the
literature and are well known within the computer security community. However, the situation
is mitigated somewhat in the case of System V/MLS because the ordinary user can create his or
her own groups and privileges, thereby being able to tailor groups and group membership to
specific situations, even to creating groups to the granularity of a single file, if necessary.

* When a user sends mail to another user who is not cleared to the label of the message, the mail
still goes through. The sending user is not notified of the situation. The receiving user can not
read that mail (and of course is not notified of the mail) unless his or her clearance is raised to
the label of the message.

- 105 -
Revision 10.2 eval com.mm (Revised 5/24/91)

Final Evaluation Report AT&T Systea V/iAS
Evaluated Hardware Couponents

Appendix A: Evaluated Hardware Components

The hardware components include: The 3B2/500 and the 3B2/600 computers, in all configurations,
provided that the chipset used in the machine is the WE 32100 series chipset, and not the WE
32200 series. Machines equipped with the WE 32200 chipset were not addressed in the course of
this evaluation.

The hardware boards which make up the WE 32100 chip set are the following:

Comeode

System Board CM518A 103984225
which includes:

Microprocessor WE 32100
Memory Management Unit (MMU) WE 32101
Math Accelerator Unit (MAU) WE 32106
Cache Memory CM522A 103984472

Memory Extension Boards:
2 Mbyte CM523B 103984605
4 Mbyte CM523A 103984597

The following interface boards may be used to connect peripheral devices to the 3B2/500 and
3B2/600 computers of the evaluated configuration:

Conode

Ports Card CM195B 103828620
HiPorts Card CM195BA 103985362
EPorts Card CM195Y 104166533
SCSI Host Adaptor CM195W 104166525

A-1

Final Evaluation Report AT&T System V/NLS
Evaluated Hardware Components

The following devices may be used in conjunction with a 3B2/500 or 3B2/600 while operating in a
B1-level evaluated configuration.

Device Type Capacity Interface Comncode

Fixed Disk 94M byte SCSI 405188616
Fixed Disk 135M byte SCSI 405188608
* Fixed Disk 147M byte SCSI 405209552
Fixed Disk 300M byte SCSI 405428129

* Cartridge Tape 60M byte SCSI 405267568
Cartridge Tape 120M byte SCSI 405408147

9-Track Tape 40M byte SCSI 405218611
9-Track Tape 160M byte SCSI 405206848

* Floppy Disk 720K byte System Board 403960875

Model 4425 Display Mono EPORTS/PORTS/HIPORTS N/A
Model 605 BCT Display Mono EPORTS/PORTS/HIPORTS 501007850
Model 630 MTG Dispk., Mono EPORTS/PORTS/HIPORTS

(Graphics/Windowing) Monitor 501001697
Controller 601001671
Mouse 524594157
Keyboard 500064865
512 RAM 501002166

Model 5310 Printer Dot Matrix EPORTS/PORTS 501006084

A * indicates that the device is supplied with a base 3B2 system.

The configurations tested by the team were: a 3B2/500 with a Vcache board, two 4425 terminals,
one 630 MTG terminal, one floppy diskette, one 147M byte hard disk drive, one 60M byte cartridge
tape drive, and two EPorts boards; a 3B2/600 with one 4425 terminal, one 605 BCT terminal, one
630 MTG terminal, one floppy diskette, two 147M byte hard disk drives, one 60M byte cartridge
tape drive, two EPorts boards, and one 5310 printer; and a 3B2/600 with one 4425 terminal, one 630
MTG terminal, one floppy diskette, one 60M byte cartridge tape drive, two 147M byte hard disk
drives, one HiPorts board, two EPorts boards, and one 5310 printer.

A-2

Final Evaluation Report AT&T System V/NLS
Evaluated Software Components

Appendix B: Evaluated Software Componets

Below in a listing of the software components of System V/MLS. System V Release 3.1.1 is
distributed as a collection of software packages plus a set of core utilities. Thus the software
components of the TCB can be described by the various packages which can be installed on the
system without invalidating the rating of the system.

" AT&T UNIX System V Release 3.1.1 Operating System Utilities
Allowable additional packages:

1. Enhanced Ports

2. SCSI Cartridge Tape Utilities

3. ASSIST

4. Windowing Utilities

5. Graphics Utilities

6. HELP Utilities

7. System Administration

8. Inter-process Communication

9. Directory and File Management

10. Editing Utilities

11. Line Printer Spooling Utilities

12. Performance Measurements

13. Spell Utilities

14. Terminal Filters

15. Terminal Information Utilities

16. User Environment Utilities

" AT&T System V/MLS Release 1.2.0

" AT&T 630/MLS Release 1.2.0

All standard System V Release 3.1.1 packages should be installed prior to the installation of System
V/MLS. This ensures that the trusted versions of the system software are not overwritten when
any other package is installed.

1B-l

Final Evaluation Report AT&T System V/LS
Trusted Computing Base Components

Appendix C: Trusted Computing Base Components

The following is a st of the elements that comprise the trusted computing base for System V/MLS.
This list contains:

1. directories,

2. data files and

3. programs (shell scripts and executable binaries).
The programs listed below are of two types:

" those programs trusted to enforce system security policy, and

" those programs trusted to operate correctly when they are executed
by a system administrator.

Trusted Computing Base Components

/
the root directory

/bck
the /bck directory

/bin
the /bin directory

/bin/ar
archive and library maintainer for portable archives.

/bin/basename
deliver last component of pathname

/bin/cat
concatenate and print files

/bin/chgrp
change group of file

/bin/chmod
change mode of file

/bin/chown
change owner of file

/bin/chpriv
change privilege of file

/bin/cp
copy files

/bin/cpo
copy file archives in and out

/bin/date
print and set the system date

/bin/dd
copy files

/bin/df
report number of free disk blocks

0-1

Final Evaluation Report AT&T System V/MWL
Trusted Computing Base Components

Trusted Computing Base Components

/bim/duff

/bin/drnamedifferential file comparator

deliver directory component of pathnazne
/bin/du

summarise disk usage
/bin/echo

echo arguments

/bin/edtext editor
/bin/epstty

set EPORT specific terminal settings
/bin/expr

evaluate arguments as an expression
/bin/false

returns a false value
/bin/file

determine file type
/bmn/rind

fn ie
/bin/grep

search a file for a pattern
/bin/ipcrm

remove an interprocess communication object
/bin/ipcs

report interprocess communication facilities status
/bin/kill

terminate a process
/bin/labels

print security labels
Ibin/line

read a line from a file
/bin/In

link a file
/bin/login

log into the system
/bin/Is

list contents of a directory

/binmailread or send mail
/bin/mkdir

make a directory
/ bin/mv

move a file
/bin/newgrp

change current group

0-2

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Components

/bin/newpriv
change current privilege

/bin/nice
run a command at a different priority

/bin/nohup
run a command immune to hangups and quits

/bin/od
octal dump program

/bin/passwd
change login password

/bin/pdpll
machine identification program

/bm/pr
print a file

/bin/ps
report process status

/bin/pwd
report working directory name

/bin/red
restricted text editor

/bin/rm
remove a file

/bin/rmail
handle remote mail

/bin/rmdir
remove a empty directory

/bin/rsh
restricted shell

/bin/sed
stream editor

/bin/setpgrp
set process group

/bin/sh
shell, command interpreter

/bin/sleep
suspend execution for an interval

/bin/sort
sort and/or merge files

/bin/stty
set terminal options

/bin/su
become another user

/bin/sum
print checksum and block count of a file

/bin/sync
update super block

0-3

Final Evaluation Report AT&T System V/MS
Trusted Computing Base Components

Trusted Computing Base Components

/bin/tafl
deliver last part of file

/bin/tee
pipe fitting

/bm/time
time a command

/bin/touch
update access and modification times of a file

/bin/true
returns a true value

/bin/tty
get the name of a terminal

/bin/u370
machine identification program

/bin/u3b
machine identification program

/bin/u3b15
machine identification program

/bin/u3b2
machine identification program

/bin/u3b5
machine identification program

/bin/uname
print name of current UNIX system

Ibin/vax
machine identification program

/bin/wc
print character, word and line count

/bin/who
report who is currently on the system

/bin/write
write to another user

/boot
contains boot modules to build OS

/boot/CONLOG
console logging module

/boot/DISP
process dispatcher

/boot/EPORTS
eports driver

/boot/GENTTY
general terminal support

/boot/HDELOG
hard disk error logging module

/boot/IDISK
internal disk driver

0-4

Final Evaluation Report AT&T System WKNS
Trusted Computing Base Components

Trusted Computing Base Components

/boot/IPC
inter-process communication support module

/boot/IUART
universal async receive transmitter driver

/boot/KERNEL
general os support routines

/boot/MAU
math acceleration unit driver

/boot/MEM
memory pseudo device

/boot/MLS
system security policy module

/boot/MSG
message queue module

/boot/OSM
operating system messages module

/boot/PDI_
hard disk logger support module

/boot/PIR
programmable interrupt request handler

/boot/PORTS
ports driver

/boot/PRF
system preformance monitoring module

/boot/S5
s5 filesystem module

/boot/SAT
security audit trail module

/boot/SOSI
SCSI support module

/boot/SDOO
SCSI hard disk driver

/boot/SEM
semaphore module

/boot/SHM
shared memory module

/boot/ST1
SCSI tape driver

/ boot/STUBS
stubs module

/boot/SXT
shell layering module

/boot/VCACHE
virtual cache module

/boot/XT
hardware layers module

0-5

Final Evaluation Report AT&T System V/fiL
Trusted Computing Bass Components

Trusted Computing Base Components

/dev
the /dev directory

/dev/*
all devices and sub-directories found in /dev

/dgmon
diagnostic monitor program

/dgn
diagnostic test directory

/dgn/.edt-swapp
diagnostic temporary file

/dgn/EPORTS
EPORTS diagnostic tests

/dgn/MAU
math acceleration unit diagnostic tests

/dgn/PORTS
PORTS diagnostic tests

/dgn/SBD
system board diagnostic tests

/dgn/SCSI
SCSI diagnostic tests

/dgn/VCACHE

/dgnX.EPRTSvirtual cache diagnostic tests

additional diagnostic tests
/dgnfX.MAU

additional diagnostic tests
/dgn/X.PORTS

additional diagnostic tests
/dgn/X.SBD

additional diagnostic tests
/dgn/X.SCSI

additional diagnostic tests
fdgn/X.VCACHE

additional diagnostic tests
/dn/ edt data

equipped device table data
/edt

equipped device table directory
/edt/SCSI

SCSI equipped device table directory
/edt/SCSI/edt,_data

equipped device table data for SCSI
/edt/SCSI/edtgen

equipped device table generator for SCSI
/etc

the /etc directory

046

Final Evaluation Report AT&T System V/MI
Trusted Computing Base Components

Trusted Computing Base Components

/etc/TIMEZONE
timesone environment variable value

/etc/bcheckrc
system initialization procedure

/etc/brc
system initialization procedure

/etc/bupsched
print time for backup schedule reminder

/etc/bsapunix
force self-configuration bootstrap

/etc/checklist
list of fiesystems processed by fsck

/etc/chroot
change root directory for a command

/etc/ckauto
determine if system was reconfigured at boot time

/etc/ckbupacd
check filesystem backup schedule

/etc/clri
clear an mnode

/etc/conslog
log console activity

/etc/coredirs
list of core directories

/etc/crash
examine system core images

/etc/cron
clock daemon

/etc/dcopy
copy filesystem for optimal access time

/etc/devnm
print device name

/etc/dfsck
check two filesystems concurrently

/etc/dinketteparm
parameters for filesystems made on diskettes

/etc/disks
add device entries for hard disks in equipped device table

/etc/drvinstall
install/uninstail a driver

/etc/editsa
add or delete entries from software application file

/etc/edittbl
edit equipped device table

/etc/errcrash
move kernel error log to save file

0- 7

Final Evaluation Report AT&T System V/IS
Trusted Computing Base Components

Trusted Computing Base Components

/etc/errdump
print kernel error log

/etc/errint
extract error log information at specified interval

/etc/express
enable or disable system diagnostics

/etc/ff
list file names and statistics for a filesystem

/etc/finc
fast incremental backup

/etc/fltboot
set NVRAM parameters for boot

/etc/fmtflop
format diskettes

/etc/fmthard
format hard disks

/etc/format
front end to fmthard and fmtflop

/etc/frec
fast recovery of files by inode numbers from a tape

/etc/fsck
check and repair filesystems

/etc/fsck5l2
check and repair filesystems (old version)

/etc/fsdb
filesystem debugger

/etc/fsdbS12
filesystem debugger old version

/etc/fsstat
report filesystem status

/etc/fstab
list of automatically mounted filesystems

/etc/fstyp
determine filesystem identifier

/etc/fstyp.d
filesystem type directory

/etc/fstyp.d/s5fstyp
s5 filesystem identification

/etc/fuser
identify processes using a file

/etc/getmajor
determine major number of hardware devices

/etc/getty
set up terminal for login

/etc/gettydefe
used by getty to set up terminal connections

0-8

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Components

/etc/gettype
get device and bus name

/etc/group
sanitize group file

/etc/grpck
check the group fie

/etc/hdeadd
add or delete hdelog reports

/etc/hdefix
report or change bad block mapping

/etc/hdelogger
hard disk error log daemon

/etc/helpadm
make changes to the halp database

/etc/init
process control initialisation

/etc/init.d
system initialisation script directory

/etc/init.d/ANNOUNCE
system initialization script

/etc/init.d/MOUNTFSYS
system initialization script

/etc/init.d/PRESERVE
system initialization script

/etc/init.d/README
system initialization script

/etc/init.d/RMTMPFILES
system initialization script

fetc/init.d/autoconfig
system initialization script

/etc/init.d/cron
system initialization script

/etc/init.d/disks
system initialization script

/etc/init.d/rwstcheck
system initialization script

/etc/init.d/perf
system initialization script

/etc/init.d/scsi
system initialisation script

/etc/init.d/sysetup
system initialization script

/etc/inittab
system initialization table

/ etc/instal
install command

C-9

Final Evaluation Report AT&T System V/Ml.S
Trusted Computing Base Components

Trusted Computing Base Components

/etc/ioctlsyscon
console terminal setting

/etc/killall
kill all active processes

/etc/labelit
label a filesystem

/etc/ldsysdujnp
load system dump from diskettes

/etc/link
link ffies or directories

/etc/log
volcopy log directory

/etc/log/filesavelog
log file for volcopy command

/etc/magic
list of magic numbers used by the file command

/etc/master.d
directory of device driver master files

/etc/master.d/conlog
console log master file

/etc/maater.d/disp

/etc/aste~d/eortsdispatcher master file

eports master file
/etc/master.d/gentty

general tty master file
/etc/master.d/hdelog

hard disk error logger master file
/etc/master.d/idisk

internal disk master file

/etcmaser~dipcinter-process communication master file
/etc/maater.d/iuart

universal async receive transmitter master file
/etc/master.d/kernel

general os master file
/etc/master.d/mau

/etc/uter~/memmath acceleration unit master file

memory master file
/etc/manter.d/mls

/etc/mster~/nwinecurity policy master file

message queue master file
/etc/master.d/osm

smngmatrM

0-10

Final Evaluation Report AT&T System V/NLS
Trusted Computing Base Components

Trusted Computing Base Comnents

/etc/master.d/pdi_
hidelogger support master file

/etc/master.d/pir
programmable interrupt master file

/etc/master.d/ports
PORTS master file

/etc/master.d/prf
system profiler master file

/etc/master.d/s5
s5 master file

/etc/master.d/sat
security audit trail master file

/etc/master.d/scsi
SCSI master file

/etc/master.d/sdOO
SCSI hard disk master file

/etc/master.d/sem
semaphore master file

/etc/master.d/shm.
shared memory master file

/etc/master.d/stOl
SCSI tape driver master ifile

/etc/master.d/stubs
stubs master file

/etc/master.d/sxt
shell layering master file

/etc/master.d/vcache
virtual cache master file

/etc/master.d/xt
hardware layering master file

/etc/mkboot
make a bootable object file

/etc/mkfs
construct a filesystem

/etc/mknod
create a block or character special file

/etc/mkunix
make a bootable system ifile

/etc/mttab
list of currently mounted filesystems

fetc/motd
message of the day file

/etc/mount
mount a filesystem

/etc/mountall
mount all filesystems found in /etc/fstab

Final Evaluation Report MTT System V/MIS
Trusted Computin Base Components

Trusted Computing Base Cenponet.

/etc/mvdir
move a directory

/etc/checkgenerate pathnames from mnode numbers

/etc/nwbootload boot programs onto the disk boot partition
/etcfpaaawd

sanitised password file
/ etc/ports

setup PORTS card
/etc/prfdc

system profiler
/etc/prfld

system profiler

/etc/prfpr
system profier

/etc/prfsnap
system profiler

/etc/prfstat,
system profiler

/etc/profile
system profile

/etc/prtconf
print system configuration

/etcprtcnf~ddirectory of support routines for /etc/prtconf

/etc/prtconf.d/scsi
print SCSI configuration

/etc/ptvtocprint the VTOC of a device

/etcpumpdownload pump code to a peripheral device

/etcfpwck
check password file

/etc/rc.dsytmiiilztodreoy

/etcrc~/lpsystem initialisation dietor

/etc/rc.d/l tp s s e n t ai ai n s rp
/etc/rcosystem initialisation script

/etc/rcO~dsystem initialisation sicr

/etcrcO~/KOONNOUCsystem initialisation script

C-12

Final Evaluation Report ATMT System V/IdLS
Trusted Computing Base Components

Trusted Computing Bane Components

/etc/rcO.d/KO6satstop
s"stem initialisation script

/etc/rco.d/K7Ocron
system initialisation script

/etc/rc2
system initialization script

/etc/rc2.d
system initialization directory,

/etc/rc2.d/KO~satstop
system initialisation script

/etc/rc2.d/SOOflrstcheck
system initialisation script

/etc/rc2.d/S0scsi
"ystem initialization script

/etc/rc2.d/SO1MOUNTFSYS
sywtem initialisation script

/etc/rc2.d/SO2PRESERVE
system initialisation script

/etc/rc2.d/SO5RMTMPFILES
system initialisation script

/etc/rc2.d/SO~aatetart

/etcrc2d/SOm~martsystem initialisation script

system initialisation script
/etc/rc2.d/SlOdisks

system initialisation script
/etc/rc2.d/S15autoconfig

system initialisation script
/etc/rc2.d/S20systup

system initialisation script
/etc/rc2.d/S21perf

system initialisation script

/etc/c2.d/~kwusystem initialization script
/etc/rc2.d/SgOerrstart

system initialisation script
/etc/rc3

system initialization script
/etc/rmha

remove SCSI host adapter
/etc/save.d

save directory used by /etc/savecpio
/etc/save.d/except

list of exception file used by
/etc/savecpio

save filesystems in cpio format on removable media

0-13

Final Evaluationi Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Component.

/etc/scsi/compress
compress a SCSI filesystem.

/etc/scoi/compress.d
support directory for compression of a filesystem

/etc/scsi/compress.d/qtape
use SCSI tape when doing a compression of the filesystem

/etc/scsi/edittbl
edit SCSI device table

/etc/scsi/mkdev
make SCSI /dev entries

/etc/setclk
set system clock

/etc/setmnt
modify /etc/mnttab file

/ etc/shutdown
change system init state

/etc/shutdown.d
support directory for shutdown command

/etc/stdproile
default .profile for newly created users

/etc/swap
swap administrative interface

/etc/syedef
print system tunables

/etc/system
defines which drivers and modules are included in the OS

/etc/telinit
process control initialisation

/etc/uadmin
adm-inistrative control command

/etc/umount
umount a filesystem

/etc/umountall
umount all filesystem found in /etc/fstab

/etc/unlink
unlink a file or directory

/etc/utmp
system accounting information

/etc/volcopy
make literal copy of filesystem

/etc/vtoc
the vtoc directory

/etc/wall
write to all users on the system

/etc/whodo,
print system activity

0-14

Final Evaluation Report AT&T System V/W.lS
Trusted Computing Base Components

Trusted Computing Base Components

/etc/wtmp
system accounting information

/flledt
file equipped device table

/install
install directory

/lib
library directory

/Iib/Iboot
system boot program

/lib/libp
libp library directory

/lib/mboot
system boot program

/Jib/olboot
system boot program

/Iib/pump
system pump code directory

/lib/ump/eortspump code for EPORTS

/Ub/pump/ports
pump code for PORTS

/lib/pumpfporte.hpp
pump code for HIPORTS

/lib/pump/scsi
pump code for SCSI

/mls
the /mls directory

/mls/mkgrplast group identifier used
/miu/.mkuser

last user identifier used
/mis/bin

the /mis/bin directory
/mIs/bin/LpSetup

Ip setup procedure
/mls/bin/Mailetup

mail setup procedure

/mlobin/ernmtupestablish known permission on critical riles/directories
/inls/binfSecadmSetup

secadm setup procedure
/mls/bin/Uucp~etup

uucp setup procedure
/mbl/bin/group.cleanup

cleanup group rie

C- 15

Final Evaluation Report AT&T System V/NLS
Trusted Computing Base Components

Trusted Computing Base Components

/mls/bin/mkdevclr
make device clearance entries

/mls/bin/mklbl
make a labels ile

/mls/bin/mlstart
system initialization script

/mlu/bin/prlbl
print in readable form the labels file

/mls/bin/rmdevclr
remove a device clearance entry

/mls/bin/satfmnt
format the security audit trail

/mls/bin/satmap
create the preamble of the security audit trail

/mlds/bin/satsave
collect audit information from the kernel

finis/bin/satatart
system initialisation script

/mls/bin/satetop
system initialization script

I mls/bin/sessions
print current sessions information

/mls/bin/sfsmap
filesystem map for audit trail

/mls/bin/updatepwgr
maintain sanitized password and group fles

/mls/ categories
system defined categories

/mls/clearances
definition of users clearances

/mlo/cleardev
definition of device clearances

/mls/group
real group file

/mls/h labels
human readable form of labels ile

/ mis/labels
definitions of all privileges on system

/MIS/ levels
system defined levels

/mls/passwd
real password file

/mls/sessions
directory of Sessions on the system

/mnt
the /mnt directory

Final Evaluation Report AT&T System V/I4LS
Trusted Computing Base Components

Trusted Computing Base Components

/save
the /save directory

/shlib
the shared library directory

/shlib/libc-s
the C shared library

/tmp
the /tmp directory

/unix
the disk image of the operating system

/usr
the /usr directory

/usr/adm
the administrative information directory

/usr/adm/bin
an administrative command. directory

/usr/adm/bin/mvlog
move log files

/usr/adm/errlog
an error log file

/usr/adm/sulog
on activity log file

/usr/admin
simplified administration directory

/usr/admin/.gettyvaluesl9
terminal settings for use of simplified administration

/usr/admin/.profile
profile for simplified administration

/usr/admin/bupsched
simplified administration script

/usr/admin/checkfsys
simplified administration script

fusrfadmin/checkfsys.d
support directory for checkfsys

/usr/admiin/checkfsys.d/diskette
simplified administration script

/usr/admin/gettyvalues
simplified administration script

/usr/admin/makefas
simplified administration script

/usr/admin/makefisys.d
support directory for makefsys

/usr/admin/makefsysa.d/ diskette
simplified administration script

/usr/admin/menu
simplified administration menu directory

C-17

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/admin/menu/DESC
simplified administration script

/usr/adnin/menu/diagnostics
simplified administration directory

/usr/admin/menu/diagnoetics/DESC
simplified administration script

/usr/admin/menu/diagnostics/diskrepair
sunplified administration script

/usr/admin/menu/diagnostics/diskreport
simplified administration script

/usr/admin/menu/diskmgmt
simplified administration directory

/usr/admin/menu/diskmgmt/DESC
simplified administration script

/usr/admin/menu/diskmgmt/checkfsys
simplified administration script

/usr/admin/menu/diskmgmt/checkfsys.d
support directory for checkfsys

/usr/admin/menu/diskmgmt/checkfsys.d/diskette
simplified administration script

/usr/adnin/menu/diskmgmt/cpdisk
simplified administration script

/usr/admin/menu/diskmgmt/cpdisk.d
support directory for cpdisk

/usr/admin/menu/diskmgmt/cpdisk.d/diskette
simplified administration script

/usr/admin/menu/diskmgmt/erase
simplified administration script

/usr/admin/menu/diskmgmt/erase.d
support directory for erase

/usr/admin/menu/diskmgmt/erase.d/diskette
simplified administration script

/usr/admin/menu/diskmgmt/format
simplified administration script

/usr/admin/menu/diskmgmt/format.d
support directory for format

/usr/admin/menu/diskmgmt/format.d/diskette
simplified administration script

/usr/admin/menu/diskmgmt/harddisk
simplified administration directory

/usr/adnin/menu/diskmgmt/harddisk/DESC
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/display
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/display.d
support directory for display

C-18

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/admin/menu/diskmgmt/harddisk/display.d/disk
simplified administration script

/us/admin/menu/diskmgmt/harddisk/format
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/format.d
support directory for format

/usr/admin/menu/diskmgmt/harddisk/format.d/disk
simplified administration script

fusr/admin/menu/diskmgnt/harddisk/mkehdfsys
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/partitioning
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/partitioning.d
support directory for partitioning

/usr/admin/menu/diskmgmt/harddisk/partitioning.d/disk
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/rmdisk
simplified administration script

/usr/admin/menu/diskmgmt/harddisk/rmdisk.d
support directory for rmdisk

/usr/admin/menu/diskmgmt/harddisk/rmdisk.d/disk
simplified administration script

/usr/admin/menu/diskmgmt/makefsys
simplified administration script

/usr/admin/menu/diskmgmt/makefsys.d
support directory for makefsys

/usr/admin/menu/diskmgmt/makefsys.d/diskette
simplified administration script

/usr/admin/menu/diskmgmt/mountfsys
simplified administration script

/usr/admin/menu/diskmgmt/mountfsys.d
support directory for mountfsys

/usr/admin/menu/diskmgnt/mountfsys.d/diskette
simplified administration script

/usr/admin/meu/diskmgnt/umountsys
simplified administration script

/ur/admin/menu/diskmgmt/umountfsys.d
support directory for umountfuys

/uur/admin/menu/diskmgmt/umountfsys.d/diskette
simplified administration script

/usr/admin/menu/filemgmt
simplified administration directory

/usr/admin/menu/filemgmt/DESC
simplified administration script

/usr/admin/menu/filemgmt/backup
simplified administration script

C-19

Final Evaluation Report A&T Systes V/M
Trusted Coepting Base Components

Trusted Computing Base Components

/usr/admin/menu/filemgmt/backup.d
support directory for backup

/usr/admin/menu/filemgmt/backup.d/9track
simplified administration script

/usr/admin/menu/filemgmt/backup.d/diskette
simplified administration script

/usr/admin/menu/filemgmt/backup.d/qtape
simplified administration script

/usr/admin/menu/filemgmt/bupsched
simplified administration directory

/usr/admin/menu/fidemgmt/bupsched/DESC
simplified administration script

/usr/adin/menu/flemgmt/bupeched/schedcheck
simplified administration script

/usr/admin/menu/filemgmt/bupsched/schedmsg
simplified administration script

/usr/admin/menu/filemgmt/diskuse
simplified administration script

/usr/admin/menu/filemgmt/fileage
simplified administration script

/usr/admin/menu/filemgmt/ilesise
simplified administration script

/usr/admin/menu/filemgmt/hsbackup
simplified administration script

/usr/admin/menu/filemgmt/hsbackup.d
support directory for habackup

/usr/admin/menu/filemgmt/hsbackup.d/9track
simplified administration script

/usr/admin/menu/filemgmt/hsbackup.d/disk
simplified administration script

/usr/admin/menu/filemgmt/hsbackup.d/qtape
simplified administration script

/usr/admin/menu/filemgmt/hsrestore
simplified administration script

/usr/admin/menu/filemgmt/hsrestore.d
support directory for hsbackup

/usr/admin/menu/filemgmt/hsrestore.d/9track
simplified administration script

/usr/admin/menu/filemgmt/hsrestore.d/disk
simplified administration script

/usr/adnmi/menu/rdemgmt/hsrestore.d/qtape
simplified administration script

/usr/adniin/menu/filemgmt/restore
simplified administration script

/usr/admin/menu/filemgmt/restore.d
support directory for restore

C-20

Final Evaluation Report AT&T System V/LS
Trusted Computing Base Components

Trusted Computing Bse Cononents

/usr/admin/enu/filemgmt//estore.d/9track
simplified administration script

/usr/admin/menu/filemgmt/restore.d/diskette
simplified administration script

/usr/admin/menu/filemgmt/restore.d/qtape
simplified administration script

/ /admin/men/fllemgmt/store
simplified administration script

/usr/admin/menu/filemgmt/store.d
support directory for store

/usr/admin/menu/fldemgmt/store.d/gtrack
simplified administration script

/usr/admin/menu/filemgmt/store.d/diskette
simplified administration script

/usr/admin/menu/filemgmt /tore.d/qtape
simplified administration script

/usr/admin/menu/machinemgmt
simplified administration directory

/usr/admin/menu/machinemgmt/DESC
simplified administration script

/usr/admin/menu/machinemgmt/autold
simplified administration script

/us/admin/mnu/machinemgmt/firmware
simplified administration script

/usr/admin/menu/machinemgmt/floppykey
simplified administration script

/usr/admin/menu/machinemgmt/powerdown
simplified administration script

/usr/admin/menu/machinemgmt/reboot
simplified administration script

/usr/admin/menu/machinemgmt/whoson
simplified administration script

/usr/admin/menu/packagemgmt
simplified administration directory

/usr/admin/menu/packagemgmt/DESC
simplified administration script

/usr/admn/menu/softwaremgmt
simplified administration directory

/usr/admin/menu/softwaremgmt/DESC
simplified administration script

/usr/admin/menu/softwaremgmt/install
simplified administration script

/usf/admin/menu/softwaremgmt/instaUpkg
simplified administration script

/ur/adm/inmenu/oftwaremgmt/insta lpkg.d
support directory for installpkg

0-21

Final Evaluation Report AT&T System V/MS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/admin/menu/softwaremgmt/installpkg.d/diskette
simplified administration script

/usr/admin/menu/softwaremgmt/istpkg
simplified administration script

/usr/admin/menu/softwaremgmt/removepkg

simplified administration script
/usr/admin/menu/softwaremgmt/removepkg.d

support directory for removepkg
/usr/admin/menu/softwaremgmt/removepkg.d/diskette

simplified administration script
/usr/admin/menu/softwaremgmt/runpkg

simplified administration script
/usr/admin/menu/softwaremgmt/runpkg.d

support directory for runpkg
/usr/admin/menu/softwaremgmt/runpkg.d/diskette

simplified administration script
/usr/admin/menu/softwaremgmt/tapepkg

simplified administration script
/usr/admin/menu/softwaremgmt/uninstall

simplified administration script

/usr/admin/menu/syssetup
simplified administration directory

/usr/admin/menu/syssetup/DESC
simplified administration script

/usr/admin/menu/syssetup/admpasswd

simplified administration script
/usr/admin/menu/syssetup/datetime

simplified administration script
/usr/admin/menu/yssetup/nodename

simplified administration script
/usr/admin/menu/syssetup/setup

simplified administration script
/usr/admin/menu/syssetup/syspasswd

simplified administration script
/usr/admin/menu/tapemgmt

simplified administration directory
/usr/admin/menu/tapemgmt/DESC

simplified administration script
/usr/admivp/nenu/tapemgmt/compress

simplified administration script
/usr/admin/menu/tapemgmt/compress.d

support directory for compress
/usr/admin/menu/tapemgmt/compress.d/qtape

simplified administration script
/usr/admin/menu/tapemgmat/format

simplified administration script

C-22

Final Evaluation Report AT&T System V/HM
Trusted Computing Base Components

Trusted Computing Base Components

/usr/admin/menu/tapemgmt/info
simplified. administration script

/usr/admiin/menu/tapemgmt/resetusage
simplified administration script

/usr/admidn/menu/tapemgmt/rmtape
simplified administration script

/usr/admin/menu/tapemgmt/rmtape.d
support directory for rmntape

/usr/admin/menu/tapemgmt/rmtape.d/9track
simplified administration script

/usr/admin/rnenu/tapemgmt/rmtape.d/qtape
simplified administration script

/usr/admin/menu/ttymgmt
simplified. administration directory

/usr/admin/menu/ttymgmt/DESC
simplified administration script

/usr/admin/menu/ttymgmt/lineset
simplified administration script

/usr/admiin/menu/ttymgmt/mlineset
simplified. administration script

/var/admnin/menu/ttymgmt/modtty
simplified administration script

/usr/admin/menu/usermgmt
simplified administration directory

/usr/admin/menu/usermgmt/DESC
simplified administration script

/usr/admin/menu/usermngmt/addgroup
simplified administration script

/usr/admin/menu/useringmt/adduser
simplified administration script

/usr/admin/menu/uermgint/degoup
simplified administration script

/usr/admin/menu/usermngmt/deluser
simplified administration script

/usr/admin/menu/uemgmt/sgroup
simplified administration script

/usrfadmin/menu/usermgmtimuser
simplified administration script

/usr/admin/menu/uermgmnt/modaddnser
simplified administration script

/usr/admin/menu/uemgmt/modgroup
simplified administration directory

/usr/admin/menu/usermgmt/modgroup/DESC
simplified administration script

/usr/admin/menu/uermgmt/modgroup/chgname
simplified administration script

0-23

Final Evaluation Report AT&T Systes V/NLS
Trusted Computing Base Compoents

Trusted Comiputing Base Comiponent.

/usr/admin/menu/userngmt/moduser
simplified administration directory

/usr/admin/menu/usermgmt/moduser/DESC
simphfled administration script

/usr/admin/menu/usermngmt/moduser/chgloginid
simplified administration script

/usr/admin/menu/usermgmt/moduser/chgpaswd
simplified administration script

/usr/admin/menu/usermgmt/moduser/chgshell
simplified administration script

/usr/admin/mountfsys
simplified administration script

/usr/admin/muountfsys.d
support directory for mountfsys

/usr/admin/mountfsys.d/diskette
simplified administration script

/usr/admin/powerdown
simplified administration script

/usr/admin/proflle.dot
simplified administration script

/usr/adinin/setup
simplified administration script

/usr/admin/sysadm
simplified administration script

/usr/admin/umountfsys
simplified administration script

/usr/adnin/umountfsys-d
support directory for umountfsys

/usr/adniin/umountfsys.d/diskette
simplified administration script

/usr/adminfunixadmin
simplified administration script

/usr/ bin
the /usr/bin directory

/usr/bin/O30init
630 initialization program

/usr/bin/PFload
load programmable function keys for a 630 terminal

/usr/bin/addgrp
add members to a group

/usr/bin/addpriv
add members to a privilege

/usr/bin/adduser
add a user to the system

/usr/bim/at
run a task at a specified time

0-24

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Compnents

/usr/bin/batch
run a task at a specified time

/usr/bin/cancel
cancel an print request

/usr/bin/checkfsys
simplified administration script

/usr/bin/clearances
print user or session clearances

/uor/bin/crontab
add or delete tasks to users crontab file

/usr/bin/cut
cut a field from the input

/usr/bin/delgrp
delete members from a group

/usr/bin/delpriv
delete members from a privilege

/usr/bin/deluser
delete a user from the system

/usr/bin/disable
disable a printer

/usr/bin/dmdld
download a program into the 630 terminal

/usr/bin/dominates
determine dominate relationship between labels

/usr/bin/dconfig
display name and description of device

/usr/bin/enable
enable a printer

/usr/bin/getopt
parse options

/ur/bin/id
print user and group identifiers and names

/usr/bin/layers
630 window manager

/usr/bin/lp
send a print request

/usr/bin/lpetat
print lp status

/usr/bin/srp list group information

/usr/bin/lspriv
list privilege information

/usr/bin/maicheck check for and/or forward multilevel mail

interactive electronic mail processing system

0-25

fimal lvaluatIoa Report AT System V/Ml
Trusted Computig Buse Components

Trusted Computing Base Components

/usr/bin/makefsys
simplified administration script

/usr/bin/maxclear
establish a users clearance

/usr/bin/mkdevclr
make device clearance entries

/usr/bin/mkgrp
make a new group

/usr/bin/mkpriv
make a new privilege

/usr/bin/mkuser
make a new entry in the password file

/usr/bin/modgrp
change owner of a group

/usr/bin/modpriv
change name of a privilege

/usr/bin/mountfoys
simplified administration script

/usr/bin/mvpriv
move a file

/usr/bin/pack
compress a file

/usr/bin/pcat
print a compress file after expansion

/usr/bin/pg
file perusal filter for terminals

/usr/bin/powerdown
simplified administration script

/usr/bin/rmdevclr
remove device clearance entries

/usr/bin/rmgrp
remove a group

/usr/bin/rmpriv
remove a privilege

/usr/bin/rmuser
remove an entry in the password file

/usr/bin/sadp
disk access profder

/usr/bin/sag
graph system activity

/usr/bin/sar
report system activity

/usr/bin/sdiff
side by side difference comparator

/usr/bin/setup
simplified administration script

0-26

Final Evaluation Report AT&T System V/MIS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/bin/shl
shell layer manager

/usr/bin/sysadm
simplified administration script

/usr/bin/tabs
set tabs on a terminal

/usr/ bin/tic
terminfo compiler

/usr/bin/timex
time a command

/usr/bin/tput
query terminfo database

/usr/bin/ir
translate characters

/usr/bin/umountfsys
simplified administration script

/usr/bin/unpack
uncompresa a packed file

/usr/bin/xtd
gather At statistics

fUsr/bin/xts
gather At statistics

/usr/bin/xtt
gather At statistics

/usr/dmd
630 software. directory

/usr/dmd/bin
trusted 630 downloadable software

/usr/dmd/bin/chk3O
check 630 firmware

/usr/dmd/bin/fw.mods
630 firmware modifications

/usr/lbin
the /usr/lbin directory

/usr/lbinfadmerr
issue a error message for an administrative command

/usr/lbin/ageffle
age files by moving to older and older names

/usr/lbin/askx
prompt with a question

/usr/lbin/checklist
get an answer that in one from a list

/usr/lbin/checkre
check an answer against a series of regular expression

/usrflbinfcheckyn
get a yes/no response from a user or check answer to question

0-27

Final Evaluation Report ATkT System V/MIS
Trusted Copting Base Components

Trusted Computing Base Components

/usr/lbin/chkyn
get a yes/no response from a user or check answer to question

/usr/lbin/devinfo
return information about a storage device

/usr/lbin/disklabel
print the label of a diskette

/usr/Ibin/diskumount
perform a umount and complain if it does not work

/usr/lbin/drivename
derive a device name from its pathnaxne

/usr/lbin/fdate
print file modification, creation or access date/time

/usr/lbin/filecheck
check for files added and deleted below the given directory

/usr/lbin/fsinfo
print filesystem information

/usr/lbin/getedt
get external device table

/usr/lbin/ignore
no op command

/usr/lbin/labeffaname
return filesystem name and volume label as shell variable assignments

/usr/lbin/largest
find largest files under a given directory

/usr/lbin/lightenfs
routine to clean up filesystems

/usr/lbin/mklost+found
make a lost and found directory

/usr/lbin/mkmenus
descend a tree directory looking for menus of commands

/usr/lbin/mktable
concatenate files, stripping comments and empty lines

/usr/lbin/ncpio
modified cpio

/usr/lbin/num
check for all numeric arguments

/usr/lbin/oldfile
look for files older than a specified number of days

/usr/lbin/optparttn
allocate any disk fr-ee space into user partitions

/usr/lbin/readpkg
read packages from the tape

/usr/lbin/restorefl"e
restore a file from the save area to the regular filesystems

/usr/lbin/rmijunk
remove files of dubious worth

0-28

Final Evaluation Report AT&T System V/J4LS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/lbin/rmkdir
recursively make directories

/usr/lbin/rrmdir
recursively remove directories

/usr/lbin/samedev
determine if device files refer to the same actual device

/usr/lbin/selectdevice
select SA name for a device

/usr/lbin/selpatteru
select which pattern matches a given device file

/usr/lbin/skip
skip a package on tape

/usr/lbin/spacewatch
look at filesystemt space.

/usr/lbin/opclsise
determine the size of a special file

/usr/lbin/vmkfs
make a filesystem within a hard disk partition

/usr/lib
the /usr/lib directory

/usr/lib/.CORFterm
core terminal definitions directory

/usr/lib/.COREterm/4/4426
terminal definition for 4425

/usr/lib/.COREterm/A/ATT4425
terminal definition for 4425

/usr/lib/.COREterm/a/tt4425
terminal definition for 4425

/usr/lib/accept
&Hlow a printer to accept requests

/usr/lib/cron
the cron directory

/usr/lib/cron/.proto
default initial script for cron jobs

/usr/Iib/cron/at.allow
file of users authorized to use the at/batch command

/usr/lib/cron/cron.alow
file of users authorized to use the cron command

/usr/lib/cron/log
log of cron activities

/usr/lib/cron/quouede
current cron queue

/usr/lib/lpadmin
Ip administrative interface

/usr/lib/lpmove
move a print request to another printer

0429

Finial Evaluation Report AT&T System V/MI
Trusted Computing Base Components

Trusted Computing Ban Components

/usr/lib/lpsched
ip scheduler

/usr/lib/lpshut
stop ip scheduler

/usr/lib/mailx
mailx directory

/usr/lib/malx/mailx.help
mailx help file

/usr/lib/mailx/rmimail
remove empty mail files from mail directory

/usr/lib/mv_dir
move a directory within its parent (i.e., rename)

/usr/lib/pgmark
add sensitivity marks to line printer output

/usr/lib/reject
prevent ip from accepting requests

/usr/lib/sa
system activity collection program directory

/usr/lib/sa/sal
collect system activity data

/usr/lib/sa/sa2
collect system activity data

/usr/lib/sa/sadc
collect system activity data

/usr/lib/scsi
SCSI hardware dependent programs

/usr/lib/scsi/format
SCSI format command

/usr/lib/scsi/hdefi~x
SCSI hard disk error correction facility

/usr/lib/scsi/labefsname
SCSI labeling routine

/usr/lib/scsi/qiccopy
SCSI quick copy

/usr/lib/scsi/dOO.O
SCSI disk information

/uisr/lib/scsi/selectscei
simplified administrative utility

/usr/lib/fcsi/tapecntl
tape control program

/uor/lib/fsci/tc.index
target controller definitions

/usr/lib/terninfo
terminal definition directory

/usr/lib/trzninfo/4/4425
terminal definition for 4425

C-30

Final Evaluation Report AT&T System V/MLS
Trusted Computing Base Components

Trusted Computing Base Components

/usr/Iib/terminfo/6/630
terminal definition for 630

/usr/ib/terminfo/A/ATT4425
terminal definition for 4425

/usr/lib/terminfo/a/at4425
terminal definition for 4425

/usr/mal
the mail directory

/usr/spool
the spool directory

/usr/spool/cron
cron spool directory

/usr/spool/cron/atjobs
current at jobs directory

/usr/spool/cron/crontabs
current cron tables directory

/usr/spool/cron/crontabs/adni
adm. cron table

/usr/spool/cron/crontabs/root
root cron table

/usr/spool/cron/crontabs/sys
sys cron table

/usr/spool/cron/crontabs/sysadm
sysadmn cron table

/usr/spool/lp
ip spool directory

/usr/spool/lp/interface
Ip printer interface directory

/usr/spool/Ip/interface/5310
5310 interface script

/Usrfspool/lp/log
ip log information

/usr/spool/Ip/model
lp model directory

/usr/spool/lp/model/5310
5310 model script

/usr/spool/Ip/oldlog
saved log information

/usr/spoolflp/outputq
current output job

/usr/spool/lp/petatus
lp status file

/usr/spool/lp/qstatus
ip status file

/usr/tmp
the /usr/tmp directory

0-31

Final Evaluation Report AT&T System V/AS
Trusted Computing Base Components

Trusted Computing Base Conmoents

C-32

Final Evaluation Report AT&T System V/MLS
Bibliography

Appendix D: Bibliography

Department of Defense, Trusted Computing System Evaluation Criteria,
publication number CSO-STD-001-85

National Computer Security Center,
Trusted Product Evaluations, A Guide For Vendors,
publication number NCSC-TG-002

System V/MLS Trusted Facility Manual,
AT&T Technologies Federal Systems, July 1990.

The 630/MLS Trusted Facility Manual; Multi-Level Secure Window Managemen4
AT&T Technologies Federal Systems, August 1990.

The 630/MLS User's Guide; Multi-Level Secure Window Management
AT&T Technologies Federal Systems, August 1990.

M. E. Smith,
Design and Implementation of a B3 Trusted Path for SVMLS,
AT&T Technologies Federal Systems, August 1990.

M. E. Smith,
Design and Implementation of a Privilege Menu for the 63OMTG Terminal in
an SVMLS Configuration,
AT&T Technologies Federal Systems, November 1989.

M. E. Smith,
Security Analysis of 630 Featuers: Host £ Support, Privilege Menu, B3
Trusted Path, Auditing Write Downs, and Programmable Menu,
AT&T Technologies Federal Systems, June 1990.

System V/MLS User's Guide,
AT&T Technologies Federal Systems, October 1989.

D-1

Final Ealuation Report AT&T System V/ES
Bibliography

System V/MLS Test Plan,
AT&T Technologies Federal Systems, August 1990.

The System V/MLS Family of Products; Security Enhanced UNIX Systems,
AT&T Technologies Federal Systems, Sept 1988.

High-Level Requirements for System V/MLS,
AT&T Technologies Federal Systems, July 1990.

System V/MLS; Requirements and Documentation Cross Reference,
AT&T Technologies Federal Systems, Sept 1988.

ATOT System V/MLS Porting Strategy and Kernel Interface Specification,
AT&T Technologies Federal Systems, July 1990.

The System V/MLS Security Audit Trail - Requirements, Design, and
Implementation,
AT&T Technologies Federal Systems, June 1990.

System V/MLS Multilevel Security Module (MLS); Requirements, Design
and Implementation,
AT&T Technologies Federal Systems, August 1990.

Design of System V/MLS Additional Security Features,
AT&T Technologies Federal Systems, March 1988.

System V/MLS; Installation Guide,
AT&T Technologies Federal Systems, July 1990.

The s8ysSb System Call; System V/MLS Security Analysis,
AT&T Technologies Federal Systems, Aug 1988.

System V/MLS Release Notes (for release 1.1),
AT&T Technologies Federal Systems, Oct 1988.

Rating Maintenance Plan for System V/MLS,
AT&T Technologies Federal Systems, August 1989.

D-2

Final Evaluation Report AT&T System V/NLS
Bibliography

WE 32101 Memory Management Unit Information Manual,
AT&T Information Systems, 1986.

WE 32100 Microprocessor Information Manual,
AT&T Information Systems, 1986.

Bach, Maurice J.,
The Design of the UNIX Operating System,
Prentice-Hail Inc., Englewoood Cliffs, NJ, 1986.

Bell, D. E. and LaPadula, L. J.,
Secure Computer Systems: Unified Exposition and Multics Interpretation,
MITRE Corp., Bedford, MA, MTR-2997, July 1976.

Brown, Patrick G.,
DSB 440330; A TOT 3B21500 Computer Test Plan 8 Specification,
Issue 1, AT&T Information Systems, August 1987.

Cons, Michael J.,
A Study of O6ject Reuse on System V/MLS,
AT&T Technologies Federal Systems, July 1988.

Coss, Michael J.,
The Bourne Shell; Design and Security Analysis,
AT&T Technologies Federal Systems, Oct 1988.

Flink, C. W.,
Multi-Level Secured Directories- An Experimental System V/MLS Feature,
AT&T Technologies, Federal Systems, November 1987.

Flink, C. W. and Powers, M. C.,
System V/MLS Multilevel Security Module (MLS) - Requirements, Design,
and Implementation,
AT&T Technologies, Federal Systems, April 1988.

Grenier, J. R.,
WPROC Internals,
AT&T Technologies, Federal Systems, March 1986.

D-3

'77-7~

Final Evalunation Report AT&T Syote V/MIS
Bibliography

Jahn, H.,
Pro gramming Environment ID in the 680 MTG Terminal Software Development
Systemn,
AT&T Technologies, Federal Systems, March 1988.

Nguyen, H. T.,
680 MTG Memory Management System,
AT&T Technologies, Federal Systems, March 1980.

Nguyen, H. T.,
Cache System in the 680 MTG Termina4
AT&T Technologies, Federal Systems, March 1986.

Nguyen, H. T.,
Default Initialization of Variables in Cached Applicatione,
AT&T Technologies, Federal Systems, April 1987.

Schrofer, E. P.,
DSB 440100; A TOT FALCON Computer System Requirements,
Issue 2, AT&T Information Systems, March 1987.

Schumann, Al,
Memory Management Subsystem;~ Design Documentation,
Review Issue 1, AT&T Information Systems, November 1987.

Sharp, R. S. and Weiss, J. D.,
Use of the A TOYT 680 Terminal with Syste m V/MIS,
AT&T Technologies, Federal Systems, December 1987.

Smith, M. E. and Smith-Thomas, B.
Securing the 680 MTG Intelligent Terminal - Requirement., Design andI
Implementation,
AT&T Technologies Federal Systems, August 1990.

Weiss, J. D.,
Design of System V/MLS Additional Security Features,
AT&T Technologies, Federal Systems, April 1988.

D-4

Final Evaluation Report AT&T System V/MIS
Evaluated Product Listing

Appendix E- Evaluated Products Listing

Serial No. CSC-EPL-SUM-90/003

RATING MAINTENANCE PRODUCT: System V/MLS Release 1.2.0 and
630/MLS Release 1.2.0 running with
UNIX System V Release 3.1.1 on the
AT&T 3B2/500 and AT&T 3B2/600
minicomputers and the AT&T 630 MTG
terminal.

ORIGINAL EVALUATED PRODUCT: System V/MLS Release 1.1.2 and
630/MLS Release 1.1.2 running with
UNIXo System V Release 3.1.1 on the
AT&T 3B2/500 and AT&T 3B2/600
minicomputers and the AT&T 630 MTG
terminal.

VZNDOIL American Telephone and Telegraph
Co. (AT&T)

RATING MAINTENANCE DATE: 28 September 1990

OVERALL EVALUATION CLASS: BI

EVALUATION SUMMARY:

AT&T has maintained the Bi rating of its System V/MLS product, through participation in
RAMP. For more information on this evaluation process and System V/MLS Release 1.2.0, see the
new Final Evaluation Report Addendum addressing System V/MLS Release 1.2.0.

PRODUCT DESCRIPTION:

UNIX is a rister trademark of UNIX System Laboatories, Inc.

E-1

Final Evaluation Report AT&T System V/HLS
Evaluated Product Listing

AT&T's System V/MLS Release 1.2.0 running with UNIX* System V Release 3.1.1 (hereafter
referred to as System V/MLS) is a multi-level secure version of the UNIX System V operating
system for the AT&T 3B2/500 and AT&T 3B2/600 minicomputers (both utilizing the WE32100
microprocessor and the WE32101 memory management unit).

System V/MLS is a multi-user, multi-tasking operating system that can support up to 48 concurrent
users on a 3B2/500 and up to 64 concurrent users on a 3B2/600. System V/MLS maintains UNIX
System V application compatibility, is compatible with the System V Interface Definition (SVID),
passes the System V Verification Suite (SVVS), and is source and binary code compatible with
existing programs, provided those programs do not require modifications to the System/V MLS
Trusted Computing Base (TCB) or violate the system security policy.

In addition to using the traditional protection mechanism of the UNIX operating system to provide
discretionary access control, System V/MLS also provides mandatory access control to limit the
distribution of information to only those users who have been authorized for it. The mandatory
security policy is consistent with the Bell-La Padula model and conforms with DoD policy. System
V/MLS provides a flexible labeling scheme that supports up to 255 site selectable hierarchical
classification levels and 1024 nonhierarchical categories.

The administrator has the capability to restrict users and login ports to selectable classification
ranges. A multi-level mail capability allows users to communicate with each other at classifications
defined by the administrator. System V/MLS enforces a security policy that prevents both
unauthorized declassification of information and unauthorized modification of trusted code. The
mandatory access controls are implemented in a manner analogous to the traditional UNIX
commands for discretionary access control. Other commands have been added to allow users to
create discretionary groups on the system. Furthernore, users can change levels without having to
log out.

A random password generator implements the algorithms recommended in the DoD Password
Management Guideline, CSC-STD-002-85. Audit trail records are generated for security-relevant
events and can be analysed by an administrator using an audit trail formatter. A trusted path is
provided at login time to ensure that users are communicating with the TOB.

The 630 Multi-Tasking Graphics intelligent terminal (630 MTG), a high-resolution, multi-window
graphics terminal, can provide the user with up to seven windows on each of two System V/MLS
hosts. The security label of the contents of each window is independent of the labels of other
windows. A "cut and paste' capability allows the user to simultaneously edit files at different
security levels within the constraints of the enforced security policy.

System V/MLS also provides some features beyond those required for a class BI system. These
include B2 trusted path, B2 subject sensitivity labels, and B2 device labeling. This product
participates in the NSA Rating Maintenance Phase (RAMP).

ENHANCEMENTS:

This RAMP action introduces the following improved functionality and enhancements:

The audit subsystem now includes eight additional User Level Interface channels. These
channels can be opened by more than one process at a time.

E-2

Final Evaluation Report AT&T System V/MLS
Evaluated Product Listing

The 63OMTG now supports two hosts of equal accreditation ranges simultaneously, providing
separation between the hosts.

Utilizing the 630 MTG windowing features, an enhanced trusted path mechanism is built into
security relevant commands. This mechanism involves displaying a separate, uniquely
distinguishable trusted path window for secure communication between the user and the TCB.

The windowing features are also used in the new user interface for selecting the subject
sensitivity level for each newly created window.

Additionally, declassification via the "cut and paste' option has been added to the 63OMTG
including confirmation and enhanced auditing, optionally including the declassified text.

*U.S. OOV 4M3ET uInrocLq IVlI-618-1-5s1yt

-3

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVALABiLITY OF REPORT

UNLIMITED DISTRIBUTION
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5- MONITORING ORGANIZATION REPORT NUMBER(S)

CSC-EPL-90/003 S238,116

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
National Computer Security Center a~fsw,-,bs) C71

6c. ADDRESS (City, State and ZIP Code) 7b ADDRESS (City, State and ZIP Code)

9800 Savage Road
Ft. George G. Meade, MD 20755-6000

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(if opplxoble)

8c ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO NO.

1 1 TITLE (Include Security Classification)
Final Evaluation Report AT&T SYSTEM V/MLS RAMP

12 PERSONAL AUTHOR(S)
Karen M Blelat. Caaivy A Crescenzi. Mark D Gabriele. 4ilham N Havener, Sharon G. Kass, Holly M. Traxler

13a TYPE OF REPORT 13b TIME COVERED 14DATE F (Yr/Mo/Day) . .IPAGECOU T

Final FROM TO I 4DT FO 1Q(rP5Dy 1.AEO~I 9

16 SUPPLEMENTARY NOTATION

i7 COSAT; CODES 18 SUBJECT TERVS (Continue on reverse if necessary and identify by block number)
NSA, American Telephone and Telegraph, System V/MLS Release

FIELD GROUP SUB GR 1.2.0, UNIX System V Release 3.1.1, TCSEC, B1

19 ABSTRACT (Continue on reverse side if necessary and identhfy by block number)
The National Security Agency's (NSA) Trusted Product and Network Security Evaluations Division
examined the security protection mechanisms provided by American Telephone and Telegraph's
System V/MLS Release 1.2.0 Running on UNIX System V Release 3.1.1. It was evaluated against the
DoD Trusted Computer System Evaluation Criteria (TCSEC) and the evaluation team determined that
the system meets all criteria for the BI level of trust.

This report documents the findings of the evaluation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDIUNLiMITED UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 8b OFFICE SYMBOL
PATRICIA L. MORENO (,,Are*Co& (301)859-4458 C71

DO FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE UNCLASSIFIED
SECURI"Y CLASSIFICATION OF THIS PAGE

